期刊论文详细信息
Biotechnology for Biofuels
Zymomonas mobilis: a novel platform for future biorefineries
Ming Xiong He3  Bo Wu1  Han Qin1  Zhi Yong Ruan2  Fu Rong Tan1  Jing Li Wang1  Zong Xia Shui1  Li Chun Dai1  Qi Li Zhu1  Ke Pan1  Xiao Yu Tang1  Wen Guo Wang1  Qi Chun Hu3 
[1] Biogas Institute of Ministry of Agriculture, Biomass Energy Technology Research Centre, Section 4-13, Renming Nanlu, Chengdu 610041, P. R. China
[2] Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
[3] Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Chengdu 610041, P. R. China
关键词: building block chemical;    biofuel;    biorefinery;    platform;    Zymomonas mobilis;   
Others  :  1084886
DOI  :  10.1186/1754-6834-7-101
 received in 2014-02-17, accepted in 2014-06-20,  发布年份 2014
PDF
【 摘 要 】

Biosynthesis of liquid fuels and biomass-based building block chemicals from microorganisms have been regarded as a competitive alternative route to traditional. Zymomonas mobilis possesses a number of desirable characteristics for its special Entner-Doudoroff pathway, which makes it an ideal platform for both metabolic engineering and commercial-scale production of desirable bio-products as the same as Escherichia coli and Saccharomyces cerevisiae based on consideration of future biomass biorefinery. Z. mobilis has been studied extensively on both fundamental and applied level, which will provide a basis for industrial biotechnology in the future. Furthermore, metabolic engineering of Z. mobilis for enhancing bio-ethanol production from biomass resources has been significantly promoted by different methods (i.e. mutagenesis, adaptive laboratory evolution, specific gene knock-out, and metabolic engineering). In addition, the feasibility of representative metabolites, i.e. sorbitol, bionic acid, levan, succinic acid, isobutanol, and isobutanol produced by Z. mobilis and the strategies for strain improvements are also discussed or highlighted in this paper. Moreover, this review will present some guidelines for future developments in the bio-based chemical production using Z. mobilis as a novel industrial platform for future biofineries.

【 授权许可】

   
2014 He et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113165151249.pdf 1809KB PDF download
Figure 5. 88KB Image download
Figure 4. 109KB Image download
Figure 3. 62KB Image download
Figure 2. 96KB Image download
Figure 1. 79KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Lee JW, Na D, Park JM, Lee J, Choi S, Lee SY: Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat Chem Biol 2012, 8:536-546.
  • [2]Peralta-Yahya PP, Zhang F, Del Cardayre SB, Keasling JD: Microbial engineering for the production of advanced biofuels. Nature 2012, 488:320-328.
  • [3]Chen XZ, Zhou L, Kangming T, Kumar A, Singh S, Prior BA, Wang ZX: Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production. Biotechnol Adv 2013, 31:1200-1223.
  • [4]Nielsen J, Larsson C, van Maris A, Pronk J: Metabolic engineering of yeast for production of fuels and chemicals. Curr Opin Biotechnol 2013, 24:398-404.
  • [5]Hong K-K, Nielsen J: Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci 2012, 69:2671-2690.
  • [6]Bentsen NS, Felby C: Biomass for energy in the European Union-a review of bioenergy resource assessments. Biotechnol Biofuels 2012, 5:1-10.
  • [7]Zhou X, Wang F, Hu H, Yang L, Guo P, Xiao B: Assessment of sustainable biomass resource for energy use in China. Biomass Bioenergy 2011, 35:1-11.
  • [8]Panesar PS, Marwaha SS, Kennedy JF: Zymomonas mobilis: an alternative ethanol producer. J Chem Technol Biotechnol 2006, 81:623-635.
  • [9]Seo JS, Chong H, Park HS, Yoon KO, Jung C, Kim JJ, Hong JH, Kim H, Kim JH, Kil JI, Park CJ, Oh HM, Lee JS, Jin SJ, Um HW, Lee HJ, Oh SJ, Kim JY, Kang HL, Lee SY, Lee KJ, Kang HS: The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4. Nat Biotechnol 2005, 23:63-68.
  • [10]Doelle H, Kirk L, Crittenden R, Toh H, Doelle M: Zymomonas mobilis: science and industrial application. Crit Rev Biotechnol 1993, 13:57-98.
  • [11]Sahm H, Bringer-Meyer S, Sprenger G: The Genus Zymomonas. Proc Natl Acad Sci U S A 2006, 5:201-221.
  • [12]Lin Y, Tanaka S: Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 2006, 69:627-642.
  • [13]Rogers PL, Jeon YJ, Lee KJ, Lawford HG: Zymomonas mobilis for fuel ethanol and higher value products. Adv Biochem Eng Biotechnol 2007, 108:263-288.
  • [14]Jang Y-S, Park JM, Choi S, Choi YJ, Seung DY, Cho JH, Lee SY: Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches. Biotechnol Adv 2012, 30:989-1000.
  • [15]Coton M, Laplace JM, Coton E: Zymomonas mobilis subspecies identification by amplified ribosomal DNA restriction analysis. Lett Appl Microbiol 2005, 40:152-157.
  • [16]Coton M, Laplace JM, Auffray Y, Coton E: “Framboisé” spoilage in French ciders: Zymomonas mobilis implication and characterization. LWT-Food Sci Technol 2006, 39:972-979.
  • [17]Coton M, Laplace J-M, Auffray Y, Coton E: Polyphasic study of Zymomonas mobilis strains revealing the existence of a novel subspecies Z. mobilis subsp. francensissubsp. nov., isolated from French cider. Int J Syst Evol Microbiol 2006, 56:121-125.
  • [18]Coton M, Laplace J, Auffray Y, Coton E: Duplex PCR method for rapid detection of Zymomonas mobilis in cider. J Inst Brew 2005, 111:299-303.
  • [19]Swings J, Deley J: Biology of Zymomonas. Bacterial Rev 1977, 41:1-46.
  • [20]Senthilkumar V, Rameshkumar N, Busby S, Gunasekaran P: Disruption of the Zymomonas mobilis extracellular sucrase gene (SacC) improves levan production. J Appl Microbiol 2004, 96:671-676.
  • [21]Kerr AL, Jeon YJ, Svenson CJ, Rogers PL, Neilan BA: DNA restriction-modification systems in the ethanologen, Zymomonas mobilis ZM4. Appl Microbiol Biotechnol 2011, 89:761-769.
  • [22]Wu B, He MX, Luo AJ, Zhang Y, Feng H, Hu QC, Zhang YZ: Construction and characterization of restriction-modification deficient mutants in Zymomonas mobilis ZM4. Chin J Appl Environ Biol 2013, 19(2):189-197.
  • [23]Seo JS, Chong HY, Kim JH, Kim JY: Method for mass production of primary metabolites, strain for mass production of primary metabolites, and method for preparation thereof. US: Patent; 2007:20090162910 A1.
  • [24]Viitanen PV, Tao L, Knoke K, Zhang Y, Caimi PG, Zhang M, Chou Y-c, Franden MA: Zymomonas with improved ethanol production in medium containing concentrated sugars and acetate. EP: Patent; 2012:2209899 B1.
  • [25]Viitanen PV, Tao L, Knoke K, Zhang Y, Caimi PG, Zhang M, Chou Y, Franden MA: Process for the production of ethanol from a medium comprising xylose, employing a recombinant Zymomonas strain having a reduced himA expression. WO: Patent; 2009:2009058938.
  • [26]Hayashi T, Furuta Y, Furukawa K: Respiration-deficient mutants of Zymomonas mobilis show improved growth and ethanol fermentation under aerobic and high temperature conditions. J Biosci Bioeng 2011, 111:414-419.
  • [27]Kalnenieks U, Galinina N, Strazdina I, Kravale Z, Pickford JL, Rutkis R, Poole RK: NADH dehydrogenase deficiency results in low respiration rate and improved aerobic growth of Zymomonas mobilis. Microbiology 2008, 154:989-994.
  • [28]Yang S, Pelletier DA, Lu TY, Brown SD: The Zymomonas mobilis regulator hfq contributes to tolerance against multiple lignocellulosic pretreatment inhibitors. BMC Microbiol 2010, 10:135.
  • [29]Yang S, Land ML, Klingeman DM, Pelletier DA, Lu TY, Martin SL, Guo HB, Smith JC, Brown SD: Paradigm for industrial strain improvement identifies sodium acetate tolerance loci in Zymomonas mobilis and Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2010, 107:10395-10400.
  • [30]Agrawal M, Wang Y, Chen RR: Engineering efficient xylose metabolism into an acetic acid-tolerant Zymomonas mobilis strain by introducing adaptation-induced mutations. Biotechnol Lett 2012, 34:1825-1832.
  • [31]Wang C, Liu C, Hong J, Zhang K, Ma Y, Zou S, Zhang M: Unmarked insertional inactivation in thegfogene improves growth and ethanol production by Zymomonas mobilis ZM4 in sucrose without formation of sorbitol as a by-product, but yields opposite effects in high glucose. Biochem Eng J 2013, 72:61-69.
  • [32]Sootsuwan K, Thanonkeo P, Keeratirakha N, Thanonkeo S, Jaisil P, Yamada M: Sorbitol required for cell growth and ethanol production by Zymomonas mobilis under heat, ethanol, and osmotic stresses. Biotechnol Biofuels 2013, 6:180.
  • [33]Charoensuk K, Irie A, Lertwattanasakul N, Sootsuwan K, Thanonkeo P, Yamada M: Physiological importance of cytochrome c peroxidase in ethanologenic thermotolerant Zymomonas mobilis. J Mol Microbiol Biotechnol 2011, 20:70-82.
  • [34]Strazdina I, Kravale Z, Galinina N, Rutkis R, Poole R, Kalnenieks U: Electron transport and oxidative stress in Zymomonas mobilis respiratory mutants. Arch Microbiol 2012, 194:461-471.
  • [35]Jeffries TW: Ethanol fermentation on the move. Nat Biotechnol 2005, 23:40-41.
  • [36]Kouvelis VN, Saunders E, Brettin TS, Bruce D, Detter C, Han C, Typas MA, Pappas KM: Complete genome sequence of the ethanol producer Zymomonas mobilis NCIMB 11163. J Bacteriol 2009, 191:7140-7141.
  • [37]Desiniotis A, Kouvelis VN, Davenport K, Bruce D, Detter C, Tapia R, Han C, Goodwin LA, Woyke T, Kyrpides NC: Complete genome sequence of the ethanol-producing Zymomonas mobilis subsp. mobilis centrotype ATCC 29191. J Bacteriol 2012, 194:5966-5967.
  • [38]Kouvelis VN, Davenport KW, Brettin TS, Bruce D, Detter C, Han CS, Nolan M, Tapia R, Damoulaki A, Kyrpides NC, Typas MA, Pappas KM: Genome sequence of the ethanol-producing Zymomonas mobilis subsp.pomaceae lectotype ATCC 29192. J Bacteriol 2011, 193:5049-5050.
  • [39]Pappas KM, Kouvelis VN, Saunders E, Brettin TS, Bruce D, Detter C, Balakireva M, Han CS, Savvakis G, Kyrpides NC, Typas MA: Genome sequence of the ethanol-producing Zymomonas mobilis subsp. mobilis lectotype ATCC 10988. J Bacteriol 2011, 193:5051-5052.
  • [40]Zhao N, Bai Y, Zhao X-Q, Yang Z-Y, Bai F-W: Draft genome sequence of the flocculating Zymomonas mobilis Strain ZM401 (ATCC 31822). J Bacteriol 2012, 194:7008-7009.
  • [41]Kouvelis VN, Teshima H, Bruce D, Detter C, Tapia R, Han C, Tampakopoulou VO, Goodwin L, Woyke T, Kyrpides NC, Typas MA, Pappas KM: Finished genome of Zymomonas mobilis subsp. mobilis strain CP4, an applied ethanol producer. Genome Announce 2014, 2:e00813-e00845.
  • [42]Yang S, Tschaplinski TJ, Engle NL, Carroll SL, Martin SL, Davison BH, Palumbo AV, Rodriguez M Jr, Brown SD: Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations. BMC Genomics 2009, 10:34.
  • [43]He MX, Wu B, Shui ZX, Hu QC, Wang WG, Tan FR, Tang XY, Zhu QL, Pan K, Li Q, Su XH: Transcriptome profiling of Zymomonas mobilis under furfural stress. Appl Microbiol Biotechnol 2012, 95:189-199.
  • [44]He MX, Wu B, Shui ZX, Hu QC, Wang WG, Tan FR, Tang XY, Zhu QL, Pan K, Li Q, Su XH: Transcriptome profiling of Zymomonas mobilis under ethanol stress. Biotechnol Biofuels 2012, 5:75.
  • [45]Yang S, Pan C, Tschaplinski TJ, Hurst GB, Engle NL, Zhou W, Dam P, Xu Y, Rodriguez M Jr, Dice L: Systems biology analysis of Zymomonas mobilis ZM4 ethanol stress responses. PLoS One 2013, 8:e68886.
  • [46]Jeon YJ, Xun Z, Su P, Rogers PL: Genome-wide transcriptomic analysis of a flocculent strain of Zymomonas mobilis. Appl Microbiol Biotechnol 2012, 93:2513-2518.
  • [47]Joachimsthal E, Haggett KD, Jang J-H, Rogers PL: A mutant of Zymomonas mobilisZM4 capable of ethanol production from glucose in the presence of high acetate concentrations. Biotechnol Lett 1998, 20:137-142.
  • [48]Jeon YJ, Svenson CJ, Joachimsthal EL, Rogers PL: Kinetic analysis of ethanol production by an acetate-resistant strain of recombinant Zymomonas mobilis. Biotechnol Lett 2002, 24:819-824.
  • [49]Mohagheghi A, Dowe N, Schell D, Chou YC, Eddy C, Zhang M: Performance of a newly developed integrant of Zymomonas mobilis for ethanol production on corn stover hydrolysate. Biotechnol Lett 2004, 26:321-325.
  • [50]Yamada T, Fatigati M, Zhang M: Performance of immobilized Zymomonas mobilis31821 (pZB5) on actual hydrolysates produced by arkenol technology. In Biotechnology for Fuels and Chemicals. Edited by Finkelstein M, McMillan J, Davison B. Springer; Appl Biochem Biotechnol; 2002:98-100. 899-907
  • [51]Skotnicki ML, Lee K, Tribe D, Rogers P: Genetic alteration of Zymomonas mobilis for ethanol production. In Genetic Engineering of Microorganisms for Chemicals. Edited by Hollaende A, DeMoss RD, Kaplan S, Konisky J, Savage D, Wolfe RS. New York: Plenum Press; 1982:271-290.
  • [52]Carey V, Walia S, Ingram L: Expression of a lactose transposon (Tn951) in Zymomonas mobilis. Appl Environ Microbiol 1983, 46:1163-1168.
  • [53]Buchholz SE, Eveleigh DE: Genetic modification of Zymomonas mobilis. Biotechnol Adv 1990, 8:547-581.
  • [54]Pappas KM, Galani I, Typas MA: Transposon mutagenesis and strain construction in Zymomonas mobilis. J Appl Microbiol 1997, 82:379-388.
  • [55]Pappas KM: Mini-Mu Transposon Mutagenesis of Ethanologenic Zymomonas mobilis. In Strain Engineering. Edited by Williams JA. Springer; Methods Mol Biol; 2011:765. 419-434
  • [56]Zhang X, Wang T, Zhou W, Jia X, Wang H: Use of a Tn5-based transposon system to create a cost-effective Zymomonas mobilis for ethanol production from lignocelluloses. Microb Cell Fact 2013, 12:41.
  • [57]Galeros M, Pappas K-M, Beletsiotis E, Typas MA: ISZm1068: an IS5-like insertion element from Zymomonas mobilis. Arch Microbiol 2001, 175:323-333.
  • [58]Chatterjee R, Yuan L: Directed evolution of metabolic pathways. Trends Biotechnol 2006, 24:28-38.
  • [59]Pál C, Papp B, Lercher MJ: Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nat Genet 2005, 37:1372-1375.
  • [60]Portnoy VA, Bezdan D, Zengler K: Adaptive laboratory evolution—harnessing the power of biology for metabolic engineering. Curr Opin Biotechnol 2011, 22:590-594.
  • [61]Conrad TM, Lewis NE, Palsson BØ: Microbial laboratory evolution in the era of genome-scale science. Mol Syst Biol 2011, 7:509.
  • [62]Dragosits M, Mattanovich D: Adaptive laboratory evolution-principles and applications for biotechnology. Microb Cell Fact 2013, 12:64.
  • [63]Hua Q, Joyce AR, Palsson BØ, Fong SS: Metabolic characterization of Escherichia colistrains adapted to growth on lactate. Appl Environ Microbiol 2007, 73:4639-4647.
  • [64]Lee D-H, Palsson BØ: Adaptive evolution of Escherichia coli K-12 MG1655 during growth on a nonnative carbon source, L-1, 2-propanediol. Appl Environ Microbiol 2010, 76:4158-4168.
  • [65]Wallace-Salinas V, Gorwa-Grauslund MF: Adaptive evolution of an industrial strain of Saccharomyces cerevisiaefor combined tolerance to inhibitors and temperature. Biotechnol Biofuels 2013, 6:151.
  • [66]Cakar ZP, Turanli‒Yildiz B, Alkim C, Yilmaz U: Evolutionary engineering of Saccharomyces cerevisiaefor improved industrially important properties. FEMS Yeast Res 2012, 12:171-182.
  • [67]Demeke MM, Dietz H, Li Y, Foulquié-Moreno MR, Mutturi S, Deprez S, Den Abt T, Bonini BM, Liden G, Dumortier F: Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiaestrain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnol Biofuels 2013, 6:89.
  • [68]Dhar R, Sägesser R, Weikert C, Yuan J, Wagner A: Adaptation of Saccharomyces cerevisiaeto saline stress through laboratory evolution. J Evol Biol 2011, 24:1135-1153.
  • [69]Wang Y: Development of acetic-acid tolerant Zymomonas mobilis strains through adaptation. Master Thesis: Georgia Institute of Technology, Chemical Engineering 2008. URI: http://hdl.handle.net/1853/29747 webcite
  • [70]Agrawal M, Mao Z, Chen RR: Adaptation yields a highly efficient xylose‒fermenting Zymomonas mobilis strain. Biotechnol Bioeng 2011, 108:777-785.
  • [71]He M-X, Feng H, Li Y, Bai F, Liu X, Zhang Y-Z: Direct production of ethanol from raw sweet potato starch using genetically engineered Zymomonas mobilis. Afr J Microbiol Res 2009, 3:721-726.
  • [72]He M-X, Li Y, Liu X, Bai F, Feng H, Zhang Y-Z: Ethanol production by mixed-cultures of Paenibacillus sp and Zymomonas mobilis using the raw starchy material from sweet potato. Ann Microbiol 2009, 59:749-754.
  • [73]Schmer KPV MR, Mitchell RB, Perrin RK: Net energy of cellulosic ethanol from switchgrass. Proc Natl Acad Sci U S A 2008, 105:464-469.
  • [74]Pimentel D, Patzek T: Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Nat Resour Res 2005, 14:65-76.
  • [75]Balat M, Balat H: Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy 2009, 86:2273-2282.
  • [76]Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S: Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 1995, 267:240-243.
  • [77]Deanda K, Zhang M, Eddy C, Picataggio S: Development of an arabinose-fermenting Zymomonas mobilisstrain by metabolic pathway engineering. Appl Env Microbiol 1996, 62:4465-4470.
  • [78]Mohagheghi A, Evans K, Finkelstein M, Zhang M: Cofermentation of glucose, xylose, and arabinose by mixed cultures of two genetically engineered Zymomonas mobilis strains. Appl Biochem Biotechnol 1998, 70–72:285-299.
  • [79]Zhang M, Chou Y-C, Picataggio SK, Finkelstein M: Single Zymomonas mobilis strain for xylose and arabinose fermentation. US: Patent; 1998:5843760.
  • [80]Mohagheghi A, Evans K, Chou Y-C, Zhang M: Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101. Appl Biochem Biotechnol 2002, 98–100:885-898.
  • [81]Kim IS, Barrow KD, Rogers PL: Nuclear magnetic resonance studies of acetic acid inhibition of rec Zymomonas mobilis ZM4 (pZB5). Appl Biochem Biotechnol 2000, 84:357-370.
  • [82]Lawford HG, Rousseau JD: Improving fermentation performance of recombinant Zymomonas in acetic acid-containing media. Appl Biochem Biotechnol 1998, 70–72:161-172.
  • [83]Jeon YJ, Svenson CJ, Rogers PL: Over-expression of xylulokinase in a xylose-metabolising recombinant strain of Zymomonas mobilis. FEMS Microbiol Lett 2005, 244:85-92.
  • [84]Supple SG, Joachimsthal EL, Dunn NW, Rogers PL: Isolation and preliminary characterization of a Zymomonas mobilis mutant with an altered preference for xylose and glucose utilization. Biotechnol Lett 2000, 22:157-164.
  • [85]Mohagheghi A, Linger J, Smith H, Yang S, Dowe N, Pienkos PT: Improving xylose utilization by recombinant Zymomonas mobilis strain 8b through adaptation using 2-deoxyglucose. Biotechnol Biofuels 2014, 7:19.
  • [86]Agrawal M, Chen RR: Discovery and characterization of a xylose reductase from Zymomonas mobilis ZM4. Biotechnol Lett 2011, 33:2127-2133.
  • [87]Kim IS, Barrow KD, Rogers PL: Kinetic and nuclear magnetic resonance studies of xylose metabolism by recombinant Zymomonas mobilis ZM4(pZB5). Appl Environ Microbiol 2000, 66:186-193.
  • [88]Lau MW, Gunawan C, Balan V, Dale BE: Comparing the fermentation performance ofEscherichia coliKO11, Saccharomyces cerevisiae424A(LNH-ST) and Zymomonas mobilis AX101 for cellulosic ethanol production. Biotechnol Biofuels 2010, 3:11.
  • [89]He MX, Feng H, Zhang YZ: Construction of a novel cell-surface display system for heterologous gene expression in Escherichia coli by using an outer membrane protein of Zymomonas mobilis as anchor motif. Biotechnol Lett 2008, 30:2111-2117.
  • [90]Ruanglek V, Maneewatthana D, Tripetchkul S: Evaluation of Thai agro-industrial wastes for bio-ethanol production by Zymomonas mobilis. Process Biochem 2006, 41:1432-1437.
  • [91]dos Santos DS, Camelo AC, Rodrigues KC, Carlos LC, Pereira N Jr: Ethanol production from sugarcane bagasse by Zymomonas mobilis using simultaneous saccharification and fermentation (SSF) process. Appl Biochem Biotechnol 2010, 161:93-105.
  • [92]Lawford HG, Rousseau JD, Tolan JS: Comparative ethanol productivities of different Zymomonas recombinants fermenting oat hull hydrolysate. Appl Biochem Biotechnol 2001, 91:133-146.
  • [93]Su R, Ma Y, Qi W, Zhang M, Wang F, Du R, Yang J, Zhang M, He Z: Ethanol production from high-solid SSCF of alkaline-pretreated corncob using recombinant Zymomonas mobilis CP4. Bioenergy Res 2013, 6:292-299.
  • [94]He MX, Li Q, Liu XY, Hu QC, Hu GQ, Pan K, Zhu QL, Wu J: Bio-ethanol production from bamboo residues with lignocellulose fractionation technology (LFT) and separate hydrolysis fermentation (SHF) by Zymomonas mobilis. Am J Biomass Bioenergy 2013, 1:1-10.
  • [95]Linger JG, Darzins A: Consolidated Bioprocessing. In Advanced Biofuels and Bioproducts. Edited by Lee JW. Springer; 2013:267-280.
  • [96]Lynd LR, Zyl WH, McBRIDE JE, Laser M: Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 2005, 16:577-583.
  • [97]Linger JG, Adney WS, Darzins A: Heterologous expression and extracellular secretion of cellulolytic enzymes by Zymomonas mobilis. Appl Environ Microbiol 2010, 76:6360-6369.
  • [98]Thirumalai Vasan P: Cloning of bacterial cellulose gene into Zymomonas mobilis for cellulosic ethanol production. PhD Thesis of Bharathidasan University 2012. URI: http://hdl.handle.net/10603/4784 webcite
  • [99]Kojima M, Okamoto K, Yanase H: Direct ethanol production from cellulosic materials byZymobacter palmaecarrying Cellulomonas endoglucanase and Ruminococcus β-glucosidase genes. Appl Microbiol Biotechnol 2013, 97:5137-5147.
  • [100]Werpy T, Petersen G: Top Value Added Chemicals from Biomass. Volume I—Results of Screening for Potential Candidates from Sugars and Synthesis Gas. DOE Report by PNNL, NREL, EERE 2013. website: http://ascension-publishingcom/BIZ/HD49pdf webcite
  • [101]Barrow KD, Collins JG, Leight DA, Rogers PL, Warr RG: Sorbitol production by Zymomonas mobilis. Appl Microbiol Biotechnol 1984, 20:225-232.
  • [102]Leigh D, Scopes R, Rogers P: A proposed pathway for sorbitol production by Zymomonas mobilis. Appl Microbiol Biotechnol 1984, 20:413-415.
  • [103]Zachariou M, Scopes RK: Glucose-fructose oxidoreductase, a new enzyme isolated from Zymomonas mobilis that is responsible for sorbitol production. J Bacteriol 1986, 167:863-869.
  • [104]Chun U, Rogers P: The simultaneous production of sorbitol from fructose and gluconic acid from glucose using an oxidoreductase of Zymomonas mobilis. Appl Microbiol Biotechnol 1988, 29:19-24.
  • [105]Rehr B, Wilhelm C, Sahm H: Production of sorbitol and gluconic acid by permeabilized cells of Zymomonas mobilis. Appl Microbiol Biotechnol 1991, 35:144-148.
  • [106]Strohdeicher M, Schmitz B, Bringer-Meyer S, Sahm H: Formation and degradation of gluconate by Zymomonas mobilis. Appl Microbiol Biotechnol 1988, 27:378-382.
  • [107]Silveira MM, Wisbeck E, Lemmel C, Erzinger G, da Costa JP, Bertasso M, Jonas R: Bioconversion of glucose and fructose to sorbitol and gluconic acid by untreated cells of Zymomonas mobilis. J Biol Chem 1999, 75:99-103.
  • [108]Cazetta ML, Celligoi MAPC, Buzato JB, Scarmino IS, da Silva RSF: Optimization study for sorbitol production by Zymomonas mobilis in sugar cane molasses. Process Biochem 2005, 40:747-751.
  • [109]Liu C, Dong HW, Zhong J, Ryu DD, Bao J: Sorbitol production using recombinant Zymomonas mobilis strain. J Biotechnol 2010, 148:105-112.
  • [110]De Boeck R, Sarmiento-Rubiano LA, Nadal I, Monedero V, Pérez-Martínez G, Yebra MJ: Sorbitol production from lactose by engineered Lactobacillus casei deficient in sorbitol transport system and mannitol-1-phosphate dehydrogenase. Appl Microbiol Biotechnol 2010, 85:1915-1922.
  • [111]Ladero V, Ramos A, Wiersma A, Goffin P, Schanck A, Kleerebezem M, Hugenholtz J, Smid EJ, Hols P: High-level production of the low-calorie sugar sorbitol by Lactobacillus plantarum through metabolic engineering. Appl Environ Microbiol 2007, 73:1864-1872.
  • [112]Akinterinwa O, Khankal R, Cirino PC: Metabolic engineering for bioproduction of sugar alcohols. Curr Opin Biotechnol 2008, 19:461-467.
  • [113]Alonso S, Rendueles M, Díaz M: Bio-production of lactobionic acid: current status, applications and future prospects. Biotechnol Adv 2013, 31:1275-1291.
  • [114]Loos H, Krämer R, Sahm H, Sprenger GA: Sorbitol promotes growth of Zymomonas mobilis in environments with high concentrations of sugar: evidence for a physiological function of glucose-fructose oxidoreductase in osmoprotection. J Bacteriol 1994, 176:7688-7693.
  • [115]Satory M, Fürlinger M, Haltrich D, Kulbe K, Pittner F, Nidetzky B: Continuous enzymatic production of lactobionic acid using glucose-fructose oxidoreductase in an ultrafiltration membrane reactor. Biotechnol Lett 1997, 19:1205-1208.
  • [116]Pedruzzi I, da Silva EAB, Rodrigues AE: Production of lactobionic acid and sorbitol from lactose/fructose substrate using GFOR/GL enzymes from Zymomonas mobilis cells: a kinetic study. Enzyme Microb Technol 2011, 49:183-191.
  • [117]Malvessi E, Carra S, Pasquali FC, Kern DB, da Silveira MM, Ayub MAZ: Production of organic acids by periplasmic enzymes present in free and immobilized cells of Zymomonas mobilis. J Ind Microbiol Biotechnol 2013, 40:1-10.
  • [118]Bekers M, Laukevics J, Karsakevich A, Ventina E, Kaminska E, Upite D, Vı̄na I, Linde R, Scherbaka R: Levan-ethanol biosynthesis using Zymomonas mobilis cells immobilized by attachment and entrapment. Process Biochem 2001, 36:979-986.
  • [119]Dawes E, Ribbons D: Sucrose utilization by Zymomonas mobilis: formation of a levan. Biochem J 1966, 98:804-812.
  • [120]Viikari L: Formation of levan and sorbitol from sucrose by Zymomonas mobilis. Appl Microbiol Biotechnol 1984, 19:252-255.
  • [121]Beker M, Shvinka J, Pankova L, Laivenieks M, Mezhbarde I: A simultaneous sucrose bioconversion into ethanol and levan by Zymomonas mobilis. Appl Biochem Biotechnol 1990, 24:265-274.
  • [122]Yoshida Y, Suzuki R, Yagi Y: Production of levan by a Zymomonas sp. J Ferment Bioeng 1990, 70:269-271.
  • [123]Reiss M, Hartmeier W: Levan Production With a Flocculent Strain of Zymomonas Mobilis. 1990.
  • [124]Ananthalakshmy VK, Gunasekaran P: Isolation and characterization of mutants from levan-producing Zymomonas mobilis. J Biosci Bioeng 1999, 87:214-217.
  • [125]Calazans G, Lopes C, Lima R, De Franc F: Antitumour activities of levans produced by Zymomonas mobilis strains. Biotechnol Lett 1997, 19:19-21.
  • [126]Calazans GM, Lima RC, de França FP, Lopes CE: Molecular weight and antitumour activity of Zymomonas mobilis levans. Int J Biol Macromol 2000, 27:245-247.
  • [127]Gunasekaran P, Mukundan G, Kannan R, Velmurugan S, Ait-Abdelkader N, Alvarez-Macarie E, Baratti J: The sacB and sacC genes encoding levansucrase and sucrase form a gene cluster in Zymomonas mobilis. Biotechnol Lett 1995, 17:635-642.
  • [128]de Oliveira MR, da Silva RSSF, Buzato JB, Celligoi MAPC: Study of levan production by Zymomonas mobilis using regional low-cost carbohydrate sources. Biochem Eng J 2007, 37:177-183.
  • [129]Silbir S, Dagbagli S, Yegin S, Baysal T, Goksungur Y: Levan production by Zymomonas mobilis in batch and continuous fermentation systems. Carbohydr Polym 2014, 99:454-461.
  • [130]Beauprez JJ, De Mey M, Soetaert WK: Microbial succinic acid production: natural versus metabolic engineered producers. Process Biochem 2010, 45:1103-1114.
  • [131]Cheng KK, Zhao XB, Zeng J, Zhang JA: Biotechnological production of succinic acid: current state and perspectives. Biofuels Bioprod Biorefin 2012, 6:302-318.
  • [132]Lee SJ, Lee D-Y, Kim TY, Kim BH, Lee J, Lee SY: Metabolic engineering of Escherichia colifor enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation. Appl Environ Microbiol 2005, 71:7880-7887.
  • [133]Jiang M, Liu SW, Ma J, Chen K, Yu L, Yue F, Xu B, Wei P: Effect of growth phase feeding strategies on succinate production by metabolically engineered Escherichia coli. Appl Environ Microbiol 2010, 76:1298-1300.
  • [134]Agren R, Otero JM, Nielsen J: Genome-scale modeling enables metabolic engineering of Saccharomyces cerevisiaefor succinic acid production. J Ind Microbiol Biotechnol 2013, 40:735-747.
  • [135]Raab AM, Gebhardt G, Bolotina N, Weuster-Botz D, Lang C: Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid. Metab Eng 2010, 12:518-525.
  • [136]Lee K, Park J, Kim T, Yun H, Lee S: The genome-scale metabolic network analysis of Zymomonas mobilis ZM4 explains physiological features and suggests ethanol and succinic acid production strategies. Microb Cell Fact 2010, 9:94.
  • [137]Widiastuti H, Kim JY, Selvarasu S, Karimi IA, Kim H, Seo JS, Lee DY: Genome-scale modeling and in silico analysis of ethanologenic bacteria Zymomonas mobilis. Biotechnol Bioeng 2011, 108:655-665.
  • [138]Pentjuss A, Odzina I, Kostromins A, Fell D, Stalidzans E, Kalnenieks U: Biotechnological potential of respiring Zymomonas mobilis: a stoichiometric analysis of its central metabolism. J Biotechnol 2013, 165:1-10.
  • [139]Atsumi S, Hanai T, Liao JC: Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 2008, 451:86-89.
  • [140]Atsumi S, Wu TY, Eckl EM, Hawkins SD, Buelter T, Liao JC: Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol 2010, 85:651-657.
  • [141]Atsumi S, Liao JC: Metabolic engineering for advanced biofuels production from Escherichia coli. Curr Opin Biotechnol 2008, 19:414-419.
  • [142]Chen X, Nielsen KF, Borodina I, Kielland-Brandt MC, Karhumaa K: Increased isobutanol production inSaccharomyces cerevisiaeby overexpression of genes in valine metabolism. Biotechnol Biofuels 2011, 4:2089-2090.
  • [143]Brat D, Boles E: Isobutanol production from D-ylose by recombinant Saccharomyces cerevisiae. FEMS Yeast Res 2013, 3:241-244.
  • [144]Branduardi P, Longo V, Berterame NM, Rossi G, Porro D: A novel pathway to produce butanol and isobutanol in Saccharomyces cerevisiae. Biotechnol Biofuels 2013, 6:1-12.
  • [145]Smith KM, Cho K-M, Liao JC: Engineering Corynebacterium glutamicum for isobutanol production. Appl Microbiol Biotechnol 2010, 87:1045-1055.
  • [146]Blombach B, Riester T, Wieschalka S, Ziert C, Youn J-W, Wendisch VF, Eikmanns BJ: Corynebacterium glutamicum tailored for efficient isobutanol production. Appl Environ Microbiol 2011, 77:3300-3310.
  • [147]Yamamoto S, Suda M, Niimi S, Inui M, Yukawa H: Strain optimization for efficient isobutanol production using Corynebacterium glutamicum under oxygen deprivation. Biotechnol Bioeng 2013, 110:2938-2948.
  • [148]Li SS, Wen JP, Jia XQ: Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression. Appl Microbiol Biotechnol 2011, 91:577-589.
  • [149]Minty JJ, Singer ME, Scholz SA, Bae C-H, Ahn J-H, Foster CE, Liao JC, Lin XN: Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. Proc Natl Acad Sci U S A 2013, 110:14592-14597.
  • [150]Uhlenbusch I, Sahm H, Sprenger GA: Expression of an L-alanine dehydrogenase gene in Zymomonas mobilis and excretion of L-alanine. Appl Environ Microbiol 1991, 57:1360-1366.
  • [151]Keasling JD: Manufacturing molecules through metabolic engineering. Science 2010, 330:1355-1358.
  • [152]Maury J, Asadollahi M, Møller K, Clark A, Nielsen J: Microbial Isoprenoid Production: An Example of Green Chemistry through Metabolic Engineering. In Biotechnology for the Future, Volume 100. Edited by Nielsen J. Berlin Heidelberg: Springer; 2005:19-51. Advances in Biochemical Engineering/Biotechnology
  • [153]Hermans MA, Neuss B, Sahm H: Content and composition of hopanoids in Zymomonas mobilisunder various growth conditions. J Bacteriol 1991, 173:5592-5595.
  • [154]Schmidt A, Bringer-Meyer S, Poralla K, Sahm H: Effect of alcohols and temperature on the hopanoid content of Zymomonas mobilis. Appl Microbiol Biotechnol 1986, 25:32-36.
  • [155]Charon L, Pale-Grosdemange C, Rohmer M: On the reduction steps in the mevalonate independent 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis in the bacterium Zymomonas mobilis. Tetrahedron Lett 1999, 40:7231-7234.
  • [156]Perzl M, Reipen IG, Schmitz S, Poralla K, Sahm H, Sprenger GA, Elmar L: Cloning of conserved genes from Zymomonas mobilis and Bradyrhizobium japonicumthat function in the biosynthesis of hopanoid lipids. Biochim Biophys Acta (BBA) - Lipids Lipid Metabol 1998, 1393:108-118.
  • [157]Grolle S, Bringer-Meyer S, Sahm H: Isolation of the dxr gene of Zymomonas mobilisand characterization of the 1-deoxy-D-xylulose 5-phosphate reductoisomerase. FEMS Microbiol Lett 2000, 191:131-137.
  • [158]Vincent SP, Sinay P, Rohmer M: Composite hopanoid biosynthesis in Zymomonas mobilis: N-acetyl-D-glucosamine as precursor for the cyclopentane ring linked to bacteriohopanetetrol. Chem Commun 2003, 6:782-783.
  • [159]Misawa N, Yamano S, Ikenaga H: Production of beta-carotene in Zymomonas mobilis and Agrobacterium tumefaciensby introduction of the biosynthesis genes from Erwinia uredovora. Appl Environ Microbiol 1991, 57:1847-1849.
  • [160]Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM: Programming cells by multiplex genome engineering and accelerated evolution. Nature 2009, 460:894-898.
  • [161]Carr PA, Church GM: Genome engineering. Nat Biotechnol 2009, 27:1151-1162.
  • [162]Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA: Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339:819-823.
  • [163]Kolb AF: Genome engineering using site-specific recombinases. Cloning Stem Cells 2002, 4:65-80.
  • [164]Wirth D, Gama-Norton L, Riemer P, Sandhu U, Schucht R, Hauser H: Road to precision: recombinase-based targeting technologies for genome engineering. Curr Opin Biotechnol 2007, 18:411-419.
  • [165]Zhang Y-X, Perry K, Vinci VA, Powell K, Stemmer WP, del Cardayré SB: Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 2002, 415:644-646.
  • [166]Alper H, Stephanopoulos G: Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng 2007, 9:258-267.
  • [167]Carroll D: Genome engineering with zinc-finger nucleases. Genetics 2011, 188:773-782.
  文献评价指标  
  下载次数:22次 浏览次数:11次