期刊论文详细信息
Biotechnology for Biofuels
Secretory pathway of cellulase: a mini-review
Shaomin Yan2  Guang Wu1 
[1] DreamSciTech, Apt 207, Zhencaili 26, Zhujiang Road, Hexi District, Tianjin, 300222, China
[2] State Key Laboratory of Non-food Biomass Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi 530007, China
关键词: UniProtKB;    Secretory mechanism;    Subcellular location;    Secretory pathway;    Cellulase;   
Others  :  794423
DOI  :  10.1186/1754-6834-6-177
 received in 2013-10-02, accepted in 2013-11-19,  发布年份 2013
PDF
【 摘 要 】

Cellulase plays an important role in modern industry and holds great potential in biofuel production. Many different types of organisms produce cellulase, which go through secretory pathways to reach the extracellular space, where enzymatic reactions take place. Secretory pathways in various cells have been the focus of many research fields; however, there are few studies on secretory pathways of cellulases in the literature. It is therefore necessary and important to review the current knowledge on the secretory pathways of cellulases. In this mini-review, we address the subcellular locations of cellulases in different organisms, discuss the secretory pathways of cellulases in different organisms, and examine the secretory mechanisms of cellulases. These sections start with a description of general secreted proteins, advance to the situation of cellulases, and end with the knowledge of cellulases, as documented in UniProt Knowledgebase (UniProtKB). Finally, gaps in existing knowledge are highlighted, which may shed light on future studies for biofuel engineering.

【 授权许可】

   
2013 Yan and Wu; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705065700612.pdf 681KB PDF download
Figure 2. 54KB Image download
Figure 1. 61KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Cellulase: The American Heritage Science Dictionary. Dictionary.com. Boston, MA: Houghton Mifflin Company; http://dictionary.reference.com/browse/cellulase webcite
  • [2]Cellulose: Dictionary.com Unabridged. Dictionary.com. New York, NY: Random House, Inc; http://dictionary.reference.com/browse/cellulose webcite
  • [3]EC 3.2.1.4 – cellulase: BRENDA. Brunswick: Institute of Biochemistry and Bioinformatics at the Technical University of Brunswick; http://www.brenda-enzymes.org/php/result_flat.php4?ecno=3.2.1.4 webcite
  • [4]Watanabe H, Tokuda G: Cellulolytic systems in insects. Annu Rev Entomol 2010, 55:609-632.
  • [5]Consortium UP: The Universal Protein Eesource (UniProt) in 2010. Nucleic Acids Res 2010, 38:D142-D148.
  • [6]Parawira W: Enzyme research and applications in biotechnological intensification of biogas production. Crit Rev Biotechnol 2012, 32:172-186.
  • [7]Watanabe H, Tokuda G: Animal cellulases. Cell Mol Life Sci 2001, 58:1167-1178.
  • [8]Coughlan MP: The properties of fungal and bacterial cellulases with comment on their production and application. Biotechnol Genet Eng Rev 1985, 3:39-109.
  • [9]Coughlan MP, Ljungdahl LG: Comparative biochemistry of fungal and bacterial cellulolytic systems. FEMS Symp 1988, 43:11-30.
  • [10]Finkelstein DB: Improvement of enzyme production in Aspergillus. Antonie Van Leeuwenhoek 1987, 53:349-352.
  • [11]Heslot H: Genetics and genetic engineering of the industrial yeast Yarrowia lipolytica. Adv Biochem Eng Biotechnol 1990, 43:43-73.
  • [12]Dashtban M, Schraft H, Qin W: Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int J Biol Sci 2009, 5:578-595.
  • [13]Hilbi H, Haas A: Secretive bacterial pathogens and the secretory pathway. Traffic 2012, 13:1187-1197.
  • [14]de Oliveira JM F, van Passel MW, Schaap PJ, de Graaff LH: Shotgun proteomics of Aspergillus niger microsomes upon D-Xylose induction. Appl Environ Microbiol 2010, 76:4421-4429.
  • [15]Tolmachova T, Anders R, Stinchcombe J, Bossi G, Griffiths GM, Huxley C, Seabra MC: A general role for Rab27a in secretory cells. Mol Biol Cell 2004, 15:332-344.
  • [16]Fukuda M: Versatile role of Rab27 in membrane trafficking: focus on the Rab27 effector families. J Biochem 2005, 137:9-1316.
  • [17]Fukuda M: Regulation of secretory vesicle traffic by Rab small GTPases. Cell Mol Life Sci 2008, 65:2801-2813.
  • [18]Booth AE, Seabra MC, Hume AN: Rab27a and melanosomes: a model to investigate the membrane targeting of Rabs. Biochem Soc Trans 2012, 40:1383-1388.
  • [19]Chou KC, Shen HB: Euk-mPLoc: a fusion classifier for large-scale eukaryotic protein subcellular location prediction by incorporating multiple sites. J Proteome Res 2007, 6:1728-1734.
  • [20]Chou KC, Shen HB: Cell-PLoc: A package of Web servers for predicting subcellular localization of proteins in various organisms. Nat Protoc 2008, 3:153-162.
  • [21]Maron BA, Michel T: Subcellular localization of oxidants and redox modulation of endothelial nitric oxide synthase. Circ J 2012, 76:2497-2512.
  • [22]Dick JM: Calculation of the relative metastabilities of proteins in subcellular compartments of Saccharomyces cerevisia. BMC Syst Biol 2009, 3:75.
  • [23]Bal AK, Verma DPS, Byrne H, MacLachlan GA: Subcellular localization of cellulases in auxin-treated pea. J Cell Biol 1976, 69:97-105.
  • [24]Desvaux M, Parham MJ, Henderson IR: Type V protein secretion: simplicity gone awry. Curr Iuues Mol Biol 2004, 6:111-124.
  • [25]Hill TW, Mullins JT: Hyphal tip growth in Achlya: II. subcellular localization of cellulase and associated enzymes. Can J Microbiol 1980, 26:1141-1146.
  • [26]Ghosh A, Al-Rabiai S, Ghosh BK, Trimino-Vasquez H, Eveleigh DE, Montenecourt BS: Increased endoplasmic reticulum content of a mutant of Trichloderma reesei (Rut-C30) in relation to cellulase synthesis. Enzyme Microb Technol 1982, 4:110-113.
  • [27]Ghosh A, Ghosh BK, Trimino-Vazquez H, Eveleigh DE, Montenecourt BS: Cellulase secretion from a hypercellulolytic mutant of Trichoderina reesei Rut-C30. Arch Microbiol 1984, 140:126-133.
  • [28]Glenn M, Ghosh A, Ghosh BK: Subcellular fractionation of a hypercellulolytic mutant, Trichoderma reesei Rut-C30: localization of endoglucanase in microsomal fraction. Appl Environ Microbiol 1985, 50:1137-1143.
  • [29]Cai YJ, Chapman SJ, Buswell JA, Chang ST: Production and distribution of endoglucanase, cellobiohydrolase, and beta-glucosidase components of the cellulolytic system of Volvariella volvacea, the edible straw mushroom. Appl Environ Microbiol 1999, 65:553-559.
  • [30]Gardner RG, Wells JE, Russell JB, Wilson DB: The cellular location of Prevotella ruminicolabeta-1,4-D-endoglucanase and its occurrence in other strains of ruminal bacteria. Appl Environ Microbiol 1995, 61:3288-3292.
  • [31]Russell JB: Fermentation of cellodextrins by cellulolytic and noncellulolytic rumen bacteria. Appl Environ Microbiol 1985, 49:572-576.
  • [32]Matsushita O, Russell JB, Wilson DB: Cloning and sequencing of a Bacteroides ruminicola B14 endoglucanase gene. J Bacteriol 1990, 172:3620-3630.
  • [33]Avgustin G, Flint HJ, Whitehead TR: Distribution of xylanase genes and enzymes among strains of Prevotella (Bacteroides) ruminicola from the rumen. FEMS Microbiol Lett 1992, 99:137-144.
  • [34]Vercoe PE, Gregg K: DNA sequence and transcription of an endoglucanase gene from Prevotella (Bacteroides) ruminicola AR20. Mol Gen Genet 1992, 233:284-292.
  • [35]Whitehead TR: Analyses of the gene and amino acid sequence of the Prevotella (Bacteroides) ruminicola 23 xylanase reveals unexpected homology with endoglucanases from other genera of bacteria. Curr Microbiol 1993, 27:27-33.
  • [36]McGavin M, Lam J, Forsberg CW: Regulation and distribution of Fibrobacter succinogenes subsp. succinogenes S85 endoglucanases. Appl Environ Microbiol 1990, 56:1235-1244.
  • [37]Groleau D, Forsberg CW: The cellulolytic activity of the rumen bacterium Bacteroides succinogenes. Can J Microbiol 1981, 27:517-530.
  • [38]Groleau D, Forsberg CW: Partial characterization of the extracellular endoglucanase produced by Bacteroides succinogenes. Can J Microbiol 1983, 29:504-517.
  • [39]SchelHhorn HE, Forsberg CW: Multiplicity of extracellular 1-(1,4)-endoglucanases of Bacteroides succinogenes S85. Can J Microbiol 1984, 30:930-937.
  • [40]McGavin M, Forsberg CW: Isolation and characterization of endoglucanases 1 and 2 from Bacteroides succinogenes. J Bacteriol 1988, 170:2914-2922.
  • [41]McGavin MJ, Forsberg CW, Crosby B, Bell AW, Dignard D, Thomas DY: Structure of the cel-3 gene from Fibrobacter succinogenes S85 and characteristics of the encoded gene product, endoglucanase 3. J Bacteriol 1989, 171:5587-5595.
  • [42]Huang L, Forsberg CW, Thomas DY: Purification and characterization of a chloride-stimulated cellobiosidase from Bacteroides succinogenes. J Bacteriol 1988, 170:2923-2932.
  • [43]Huang L, Forsberg CW: Isolation of a cellodextrinase from Bacteroides succinogenes. Appl Environ Microbiol 1987, 53:1034-1041.
  • [44]Huang L, Forsberg CW: Cellulose digestion and cellulase regulation and distribution in Fibrobacter succinogenes subsp. succinogenes S85. Appl Environ Microbiol 1990, 56:1221-1228.
  • [45]Salmond GP, Reeves PJ: Membrane traffic wardens and protein secretion in gram-negative bacteria. Trends Biochem Sci 1993, 18:7-12.
  • [46]Henderson IR, Nataro JP, Kaper JB, Meyer TF, Farrand SK, Burns DL, Finlay BB, St Geme JW 3rd: Renaming protein secretion in the gram-negative bacteria. Trends Microbiol 2000, 8:352.
  • [47]Thanassi DG, Hultgren SJ: Multiple pathways allow protein secretion across the bacterial outer membrane. Curr Opin Cell Biol 2000, 12:420-430.
  • [48]Andersen C: Channel-tunnels, outer membrane components of type I secretion systems and multidrug efflux pumps of gram-negative bacteria. Rev Physiol Biochem Pharmacol 2003, 147:122-165.
  • [49]Stathopoulos C, Hendrixson DR, Thanassi DG, Hultgren SJ, St Geme JW 3rd, Curtiss R 3rd: Secretion of virulence determinants by the general secretory pathway in gram-negative pathogens, an evolving story. Microbes Infect 2000, 2:1061-1072.
  • [50]Sandkvist M: Biology of type II secretion. Mol Microbiol 2001, 40:271-283.
  • [51]Buttner D, Bonas U: Port of entry, the type III secretion translocon. Trends Microbiol 2002, 10:186-192.
  • [52]Blocker A, Komoriya K, Aizawa S: Type III secretion systems and bacterial flagella, insights into their function from structural similarities. Proc Natl Acad Sci U S A 2003, 100:3027-3030.
  • [53]Gauthier A, Thomas NA, Finlay BB: Bacterial injection machines. J Biol Chem 2003, 278:25273-25276.
  • [54]Christie PJ, Vogel JP: Bacterial type IV secretion, conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol 2000, 8:354-360.
  • [55]Christie PJ: Type IV secretion, intercellular transfer of macromolecules by systems ancestrally related to conjugation machines. Mol Microbiol 2001, 40:294-305.
  • [56]Yen MR, Peabody CR, Partovi SM, Zhai Y, Tseng YH, Saier MH: Protein-translocating outer membrane porins of gram-negative bacteria. Biochim Biophys Acta 2002, 1562:6-31.
  • [57]Mougous JD, Cuff ME, Raunser S, Shen A, Zhou M, Gifford CA, Goodman AL, Joachimiak G, Ordoněz CL, Lory S, Walz T, Joachimiak A, Mekalanos JJ: A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 2006, 312:1526-1530.
  • [58]Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC, Heidelberg JF, Mekalanos JJ: Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A 2006, 103:1528-1533.
  • [59]Boyer F, Fichant G, Berthod J, Vandenbrouck Y, Attree I: Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics 2009, 10:104.
  • [60]Bingle LE, Bailey CM, Pallen MJ: Type VI secretion: a beginner’s guide. Curr Opin Microbiol 2008, 11:3-8.
  • [61]Filloux A, Hachani A, Bleves S: The bacterial type VI secretion machine: yet another player for protein transport across membranes. Microbiology 2008, 154:1570-1583.
  • [62]Champion PA, Champion MM, Manzanillo P, Cox JS: ESX-1 secreted virulence factors are recognized by multiple cytosolic AAA ATPases in pathogenic mycobacteria. Mol Microbiol 2009, 73:950-962.
  • [63]Bitter W, Houben EN, Bottai D, Brodin P, Brown EJ, Cox JS, Derbyshire K, Fortune SM, Gao LY, Liu J, van Pittius NCG, Pym AS, Rubin EJ, Sherman DR, Cole ST, Brosch R: Systematic genetic nomenclature for type VII secretion systems. PLoS Pathog 2009, 10:e1000507.
  • [64]Daleke MH, Ummels R, Bawono P, Heringa J, Vandenbroucke-Grauls CM, Luirink J, Bitter W: General secretion signal for the mycobacterial type VII secretion pathway. Proc Natl Acad Sci U S A 2012, 109:11342-11347.
  • [65]Desvaux M, Hébraud M, Talon R, Henderson IR: Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol 2009, 17:139-145.
  • [66]Rosch J, Caparon M: A microdomain for protein secretion in gram-positive bacteria. Science 2004, 304:1513-1515.
  • [67]Diao L, Dong Q, Xu Z, Yang S, Zhou J, Freudl R: Functional implementation of the posttranslational SecB-SecA protein-targeting pathway in Bacillus subtilis. Appl Environ Microbiol 2012, 78:651-659.
  • [68]Anderson M, Chen YH, Butler EK, Missiakas DM: EsaD, a secretion factor for the Ess pathway in Staphylococcus aureus. J Bacteriol 2011, 193:1583-1589.
  • [69]Fagerlund A, Lindbäck T, Granum PE: Bacillus cereus cytotoxins Hbl, Nhe and CytK are secreted via the Sec translocation pathway. BMC Microbiol 2010, 10:304.
  • [70]Rabouille C, Malhotra V, Nickel W: Diversity in unconventional protein secretion. J Cell Sci 2012, 125:5251-5255.
  • [71]Engelman DM, Steitz TA: The spontaneous insertion of proteins into and across membranes: the helical hairpin hypothesis. Cell 1981, 23:411-422.
  • [72]Henderson R, Unwin PNT: Three-dimensional model of purple membrane obtained by electron microscopy. Nature 1975, 257:28-32.
  • [73]Ozols J, Gerard C: Covalent structure of the membranous segment of horse cytochrome b5. J Biol Chem 1977, 252:8549-8553.
  • [74]Spang A: On vesicle formation and tethering in the ER-Golgi shuttle. Curr Opin Cell Biol 2009, 21:531-536.
  • [75]Matoba S, Fukayama J, Wing RA, Ogrydziak DM: Intracellular precursors and secretion of alkaline extracellular protease of Yarrowia lipolytica. Mol Cell Biol 1988, 8:4904-4916.
  • [76]Nicaud JM, Fournier P, Bonnardiere CL, Chasles M, Gaillardin C: Use of ars18 based vectors to increase protein production in Yarrowia lipolytica. J Biotechnol 1991, 19:259-270.
  • [77]Delic M, Valli M, Graf AB, Pfeffer M, Mattanovich D, Gasser B: The secretory pathway: exploring yeast diversity. FEMS Microbiol Rev 2013, 37:872-914.
  • [78]Bolhuis A: Protein transport in the halophilic archaeon Halobacterium sp.NRC-1: a major role for the Twin-Arginine translocation pathway? Microbiology 2002, 148:3335-3345.
  • [79]Eichler J: Archaeal protein translocation: crossing membranes in the third domain of life. Eur J Biochem 2000, 267:3402-3412.
  • [80]Eichler J, Moll R: The signal recognition particle of Archaea. Trends Microbiol 2001, 9:130-136.
  • [81]Tjalsma H, Bolhuis A, Jongbloed JDH, Bron S, van Dijl JM: Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 2000, 64:515-547.
  • [82]Van Wely KH, Swaving J, Freudl R, Driessen AJ: Translocation of proteins across the cell envelope of Gram-positive bacteria. FEMS Microbiol Rev 2001, 25:437-454.
  • [83]Pang KS, Maeng HJ, Fan J: Interplay of transporters and enzymes in drug and metabolite processing. Mol Pharm 2009, 6:1734-1755.
  • [84]Bovenschen N, Kummer JA: Orphan granzymes find a home. Immunol Rev 2010, 235:117-127.
  • [85]Shallom D, Shoham Y: Microbial hemicellulases. Curr Opin Microbiol 2003, 6:219-228.
  • [86]Murashima K, Kosugi A, Doi RH: Synergistic effects on crystalline cellulose degradation between cellulosomal cellulases from Clostridium cellulovorans. J Bacteriol 2002, 184:5088-5095.
  • [87]Koukiekolo R, Cho HY, Kosugi A, Inui M, Yukawa H, Doi RH: Degradation of corn fiber by Clostridium cellulovorans cellulases and hemicellulases and contribution of scaffolding protein CbpA. Appl Environ Microbiol 2005, 71:3504-3511.
  • [88]Tamaru Y, Miyake H, Kuroda K, Ueda M, Doi RH: Comparative genomics of the mesophilic cellulosome-producing Clostridium cellulovorans and its application to biofuel production via consolidated bioprocessing. Environ Technol 2010, 31:889-903.
  • [89]Raman B, Pan C, Hurst GB, Rodriguez M Jr, McKeown CK, Lankford PK, Samatova NF, Mielenz JR: Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. PLoS ONE 2009, 4:e5271.
  • [90]Bayer EA, Lamed R: Ultrastructure of the cell surface cellulosome of Clostridium thermocellum and its interaction with crystalline cellulose. J Bacteriol 1986, 167:828-836.
  • [91]Orpin CG: Studies on the rumen flagellate Neocallimastix frontalis. J Gen Microbiol 1975, 91:249-262.
  • [92]Wilson CA, Wood TM: The anaerobic fungus Neocallimastix frontalis: isolation and properties of a cellulosome-type enzyme fraction with the capacity to solubilize hydrogen-bond-ordered cellulose. Appl Microbiol Biotechnol 1992, 37:125-129.
  • [93]Ueda M, Goto T, Nakazawa M, Miyatake K, Sakaguchi M, Inouye K: A novel cold-adapted cellulase complex from Eisenia foetida: characterization of a multienzyme complex with carboxymethylcellulase, beta-glucosidase, beta-1,3 glucanase, and beta-xylosidase. Comp Biochem Physiol B Biochem Mol Biol 2010, 157:26-32.
  • [94]Doi RH, Tamaru Y: The Clostridium cellulovorans cellulosome: an enzyme complex with plant cell wall degrading activity. Chem Rec 2001, 1:24-32.
  • [95]Bayer EA, Belaich JP, Shoham Y, Lamed R: The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 2004, 58:521-554.
  • [96]Ali BR, Zhou L, Graves FM, Freedman RB, Black GW, Gilbert HJ, Hazelwood GP: Cellulases and hemicellulases of the anaerobic fungus Piromyces constitute a multiprotein cellulose-binding complex and are encoded by multigene families. FEMS Microbiol Lett 1995, 125:15-21.
  • [97]Mitsuzawa S, Kagawa H, Li Y, Chan SL, Paavola CD, Trent JD: The rosettazyme: a synthetic cellulosome. J Biotechnol 2009, 143:139-144.
  • [98]Bomble YJ, Beckham GT, Matthews JF, Nimlos MR, Himmel ME, Crowley MF: Modeling the self-assembly of the cellulosome enzyme complex. J Biol Chem 2011, 286:5614-5623.
  • [99]Lupashin V, Sztul E: Golgi tethering factors. Biochim Biophys Acta 2005, 1744:325-339.
  • [100]Holland IB, Schmitt L, Young J: Type 1 protein secretion in bacteria, the ABC-transporter dependent pathway (review). Mol Membr Biol 2005, 22:29-39.
  • [101]Delepelaire P: Type I secretion in gram-negative bacteria. Biochim Biophys Acta 2004, 1694:149-161.
  • [102]Lee VT, Schneewind O: Protein secretion and the pathogenesis of bacterial infections. Genes Dev 2001, 15:1725-1752.
  • [103]Chen D, Lei L, Lu C, Flores R, DeLisa MP, Roberts TC, Romesberg FE, Zhong G: Secretion of the chlamydial virulence factor CPAF requires the Sec-dependent pathway. Microbiology 2010, 156:3031-3040.
  • [104]Francetic O, Kumamoto CA: Escherichia coli SecB stimulates export without maintaining export competence of ribosebinding protein signal sequence mutants. J Bacteriol 1996, 178:5954-5959.
  • [105]Zhou J, Xu Z: The structural view of bacterial translocation-specific chaperone SecB: implications for function. Mol Microbiol 2005, 58:349-357.
  • [106]Saier MH Jr: Protein secretion and membrane insertion systems in gram-negative bacteria. J Membr Biol 2006, 214:75-90.
  • [107]Baba T, Jacq A, Brickman E, Beckwith J, Taura T, Ueguchi C, Akiyama Y, Ito K: Characterization of cold-sensitive secY mutants of Escherichia coli. J Bacteriol 1990, 172:7005-7010.
  • [108]Collinson I: The structure of the bacterial protein translocation complex SecYEG. Biochem Soc Trans 2005, 33:1225-1230.
  • [109]Driessen AJ, Nouwen N: Protein translocation across the bacterial cytoplasmic membrane. Annu Rev Biochem 2008, 77:643-667.
  • [110]Economou A: Following the leader: bacterial protein export through the Sec pathway. Trends Microbiol 1999, 7:315-320.
  • [111]Pugsley A: The complete general secretory pathway in gram-negative bacteria. Microbiol Rev 1993, 57:50-108.
  • [112]Pohlner J, Halter R, Beyreuther K, Meyer TF: Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature 1987, 325:458-462.
  • [113]Weber BS, Miyata ST, Iwashkiw JA, Mortensen BL, Skaar EP, Pukatzki S, Feldman MF: Genomic and functional analysis of the type VI secretion system in Acinetobacter. PLoS One 2013, 8:e55142.
  • [114]Bernard CS, Brunet YR, Gueguen E, Cascales E: Nooks and crannies in Type VI secretion regulation. J Bacteriol 2010, 192:3850-3860.
  • [115]Reeves PJ, Whitcombe D, Wharam S, Gibson M, Allison G, Bunce N, Barallon R, Douglas P, Mulholland V, Stevens S, Walker D, Salmond GPC: Molecular cloning and characterization of 13 out genes from Erwinia carotovora subspecies carotovora : genes encoding members of a general secretion pathway (GSP) widespread in gram-negative bacteria. Mol Microbiol 1993, 8:433-456.
  • [116]Ricardo S, Lehmann R: An ABC transporter controls export of a Drosophila germ cell attractant. Science 2009, 323:943-946.
  • [117]Sohn YS, Park CS, Lee SB, Ryu DD: Disruption of PMR1, encoding a Ca2+-ATPase homolog in Yarrowia lipolytica, affects secretion and processing of homologous and heterologous proteins. J Bacteriol 1998, 180:6736-6742.
  • [118]Antebi A, Fink GR: The yeast Ca2+-ATPase homologue, PMR1, is required for normal Golgi function and localizes in a novel Golgi-like distribution. Mol Biol Cell 1992, 3:633-654.
  • [119]Harmsen MM, Langedijk AC, van Tuinen E, Geerse RH, Raue HA, Maat J: Effect of a pmr1 disruption and different signal sequences on the intracellular processing and secretion of Cyamopsis tetragonoloba α-galactosidase by Saccharomyces cerevisiae. Gene 1993, 125:115-123.
  • [120]Rudolph HK, Antebi A, Fink GR, Buckley CM, Dorman TE, LeVitre J, Davidson LS, Mao J, Moir DT: The yeast secretory pathway is perturbed by mutations in PMR1, a member of a Ca21-ATPase family. Cell 1989, 58:133-145.
  • [121]Wharam D, Mulholland V, Salmond GPC: Conserved virulence factor regulation and secretion systems in bacterial pathogens of plants and animals. Eur J Plant Pathology 1994, 101:1-13.
  • [122]Bayer EA, Kenig R, Lamed R: Studies on the adherence of Clostridium thermocellum to cellulose. J Bacteriol 1983, 156:818-827.
  • [123]Lamed R, Setter E, Bayer EA: Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J Bacteriol 1983, 156:828-836.
  • [124]Lamed R, Kenig R, Setter E, Bayer EA: Major characteristics of the cellulolytic system of Clostridium thermocellum coincide with those of the purified cellulosome. Enzyme Microb Technol 1985, 7:37-41.
  • [125]Lamed R, Naimark J, Morgenstern E, Bayer EH: Specialized cell surfaces structures in cellulolytic bacteria. J Bacteriol 1987, 169:3792-3800.
  • [126]Lamed R, Setter E, Bayer E: Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J Bacteriol 1983, 156:828-836.
  • [127]Diekmann Y, Seixas E, Gouw M, Tavares-Cadete F, Seabra MC, Pereira-Leal JB: Thousands of rab GTPases for the cell biologist. PLoS Comput Biol 2011, 7:e1002217.
  • [128]Bobrie A, Colombo M, Raposo G, Théry C: Exosome secretion: molecular mechanisms and roles in immune responses. Traffic 2011, 12:1659-1668.
  • [129]Houtari J, Helenius A: Endosome maturation. EMBO J 2011, 30:3481-3500.
  • [130]Todaka N, Nakamura R, Moriya S, Ohkuma M, Kudo T, Takahashi H, Ishida N: Screening of optimal cellulases from symbiotic protists of termites through expression in the secretory pathway of Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2011, 75:2260-2263.
  • [131]Prediction of protein sorting signals and localization sites in amino acid sequences: PSORT. Tokyo: Human Genome Center, Institute for Medical Science, University of Tokyo; http://psort.hgc.jp/ webcite
  • [132]McGrath JP, Varshavsky A: The yeast STE6 gene encodes a homologue of the mammalian multidrug resistance P-glycoprotein. Nature 1989, 340:400-404.
  • [133]Michaelis S: STE6, the yeast a-factor transporter. Semin Cell Biol 1993, 4:17-27.
  • [134]Christensen PU, Davey J, Nielsen O: The Schizosaccharomyces pombe mam1 gene encodes an ABC transporter mediating secretion of M-factor. Mol Gen Genet 1997, 255:226-236.
  • [135]Denny PW, Gokool S, Russell DG, Field MC, Smith DF: Acylation-dependent protein export inLeishmania. J Biol Chem 2000, 275:11017-11025.
  • [136]Stegmayer C, Kehlenbach A, Tournaviti S, Wegehingel S, Zehe C, Denny P, Smith DF, Schwappach B, Nickel W: Direct transport across the plasma membrane of mammalian cells of Leishmania HASPB as revealed by a CHO export mutant. J Cell Sci 2005, 118:517-527.
  • [137]Maclean LM, O’Toole PJ, Stark M, Marrison J, Seelenmeyer C, Nickel W, Smith DF: Trafficking and release of Leishmania metacyclic HASPB on macrophage invasion. Cell Microbiol 2012, 14:740-761.
  • [138]Möskes C, Burghaus PA, Wernli B, Sauder U, Dürrenberger M, Kappes B: Export of Plasmodium falciparum calcium-dependent protein kinase 1 to the parasitophorous vacuole is dependent on three Nterminal membrane anchor motifs. Mol Microbiol 2004, 54:676-691.
  • [139]Stingl U, Radek R, Yang H, Brune A: “Endomicrobia”: Cytoplasmic symbionts of termite gut protozoa form a separate phylum of prokaryotes. Appl Environ Microbiol 2005, 71:1473-1479.
  • [140]Alcamo E, Warner JM: Schaum’s Outline of Microbiology. 2nd edition. New York, NY: McGraw Hill Professional; 2009:144.
  • [141]Backhaus R, Zehe C, Wegehingel S, Kehlenbach A, Schwappach B, Nickel W: Unconventional protein secretion: membrane translocation of FGF-2 does not require protein unfolding. J Cell Sci 2004, 117:1727-1736.
  • [142]Torrado LC, Temmerman K, Müller HM, Mayer MP, Seelenmeyer C, Backhaus R, Nickel W: An intrinsic quality-control mechanism ensures unconventional secretion of fibroblast growth factor 2 in a folded conformation. J Cell Sci 2009, 122:3322-3329.
  • [143]Nickel W: The unconventional secretory machinery of fibroblast growth factor 2. Traffic 2011, 12:799-805.
  • [144]Kitagawa T, Kohda K, Tokuhiro K, Hoshida H, Akada R, Takahashi H, Imaeda T: Identification of genes that enhance cellulase protein production in yeast. J Biotechnol 2011, 151:194-203.
  • [145]Srikrishnan S, Randall A, Baldi P, Da Silva NA: Rationally selected single-site mutants of the Thermoascus aurantiacus endoglucanase increase hydrolytic activity on cellulosic substrates. Biotechnol Bioeng 2012, 109:1595-1599.
  • [146]Harmsen MM, Bruyne MI, Raue HA, Maat J: Overexpression of binding protein and disruption of the PMR1 gene synergistically stimulate secretion of bovine prochymosin but not plant thaumatin in yeast. Appl Microbiol Biotechnol 1996, 46:365-370.
  • [147]Bulleid NJ, Ellgaard L: Multiple ways to make disulfides. Trends Biochem Sci 2011, 36:485-492.
  • [148]Xu L, Shen Y, Hou J, Peng B, Tang H, Bao X: Secretory pathway engineering enhances secretion of cellobiohydrolase I from Trichoderma reesei in Saccharomyces cerevisiae. J Biosci Bioeng 2013, (13):00256-00259. doi:10.1016/j.jbiosc.2013.06.017
  文献评价指标  
  下载次数:0次 浏览次数:1次