期刊论文详细信息
Biotechnology for Biofuels
Growth of Chlamydomonas reinhardtii in acetate-free medium when co-cultured with alginate-encapsulated, acetate-producing strains of Synechococcus sp. PCC 7002
Jesse B Therien2  Oleg A Zadvornyy2  Matthew C Posewitz1  Donald A Bryant3  John W Peters2 
[1] Department of Chemistry and Geochemistry, Colorado School of Mines, Golden 80401, Colorado, USA
[2] Department of Chemistry and Biochemistry, Montana State University, Bozeman 59717, Montana, USA
[3] Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park 16802, Pennsylvania, USA
关键词: Alginate immobilization;    Co-culture;    Acetate production;    Lipid production;    Cyanobacteria;    Algae;    Biofuels;   
Others  :  1084337
DOI  :  10.1186/s13068-014-0154-2
 received in 2014-06-05, accepted in 2014-10-02,  发布年份 2014
PDF
【 摘 要 】

Background

The model alga Chlamydomonas reinhardtii requires acetate as a co-substrate for optimal production of lipids, and the addition of acetate to culture media has practical and economic implications for algal biofuel production. Here we demonstrate the growth of C. reinhardtii on acetate provided by mutant strains of the cyanobacterium Synechococcus sp. PCC 7002.

Results

Optimal growth conditions for co-cultivation of C. reinhardtii with wild-type and mutant strains of Synechococcus sp. 7002 were established. In co-culture, acetate produced by a glycogen synthase knockout mutant of Synechococcus sp. PCC 7002 was able to support the growth of a lipid-accumulating mutant strain of C. reinhardtii defective in starch production. Encapsulation of Synechococcus sp. PCC 7002 using an alginate matrix was successfully employed in co-cultures to limit growth and maintain the stability.

Conclusions

The ability of immobilized strains of the cyanobacterium Synechococcus sp. PCC 7002 to produce acetate at a level adequate to support the growth of lipid-accumulating strains of C. reinhartdii offers a potentially practical, photosynthetic alternative to providing exogenous acetate into growth media.

【 授权许可】

   
2014 Therien et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113160751224.pdf 923KB PDF download
Figure 5. 33KB Image download
Figure 4. 40KB Image download
Figure 3. 38KB Image download
Figure 2. 27KB Image download
Figure 1. 33KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Ren JZ, Manzardo A, Mazzi A, Fedele A, Scipioni A: Emergy analysis and sustainability efficiency analysis of different crop-based biodiesel in life cycle perspective. Scientific World J 2013, 2013:1-12.
  • [2]Posten C, Schaub G: Microalgae and terrestrial biomass as source for fuels - a process view. J Biotechnol 2009, 142:64-69.
  • [3]Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B: Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 2008, 1:20-43.
  • [4]Dwidar M, Kim S, Jeon BS, Um Y, Mitchell RJ, Sang BI: Co-culturing a novel Bacillus strain with Clostridium tyrobutyricum ATCC 25755 to produce butyric acid from sucrose. Biotechnol Biofuels 2013, 6:35. BioMed Central Full Text
  • [5]Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S: Biofuels from algae: challenges and potential. Biofuels 2010, 1(5):763-784.
  • [6]Campbell PK, Beer T, Batten D: Life cycle assessment of biodiesel production from microalgae in ponds. Bioresour Technol 2011, 102:50-56.
  • [7]Beer LL, Boyd ES, Peters JW, Posewitz MC: Engineering algae for biohydrogen and biofuel production. Curr Opin Biotechnol 2009, 20:264-271.
  • [8]Radakovits R, Eduafo PM, Posewitz MC: Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum. Metab Eng 2013, 13:89-95.
  • [9]Lakaniemi AM, Hulatt CJ, Thomas DN, Tuovinen OH, Puhakka JA: Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass. Biotechnol Biofuels 2011, 4:34. BioMed Central Full Text
  • [10]Wahlen BD, Willis RM, Seefeldt LC: Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresour Technol 2011, 102:2724-2730.
  • [11]Wang JF, Li RM, Lu D, Ma S, Yan YP, Li WJ: A quick isolation method for mutants with high lipid yield in oleaginous yeast. World J Microbiol Biotechnol 2009, 25:921-925.
  • [12]Meuser JE, Ananyev G, Wittig LE, Kosourov S, Ghirardi ML, Seibert M, Dismukes GC, Posewitz MC: Phenotypic diversity of hydrogen production in chlorophycean algae reflects distinct anaerobic metabolisms. J Biotechnol 2009, 142:21-30.
  • [13]Stern DB, Witman GB: The Chlamydomonas Sourcebook: Organellar and Metabolic Processes. Academic Press, Oxford UK; 1989.
  • [14]Zabawinski C, Van den Koornhuyse N, D’Hulst C, Schlichting R, Giersch C, Delrue B, Lacroix JM, Preiss J, Ball S: Starchless mutants of Chlamydomonas reinhardtii lack the small subunit of a heterotetrameric ADP-glucose pyrophosphorylase. J Bacteriol 2001, 183:1069-1077.
  • [15]Work VH, Radakovits R, Jinkerson RE, Meuser JE, Elliott LG, Vinyard DJ, Laurens LM, Dismukes GC, Posewitz MC: Increased lipid accumulation in the Chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryot Cell 2010, 9:1251-1261.
  • [16]Sager R, Granick S: Nutritional studies with Chlamydomanas reinhardtii. Ann N Y Acad Sci 1953, 56:831-838.
  • [17]McNeely K, Xu Y, Bennette N, Bryant DA, Dismukes GC: Redirecting reductant flux into hydrogen production via metabolic engineering of fermentative carbon metabolism in a cyanobacterium. Appl Environ Microbiol 2010, 76:5032-5038.
  • [18]Xu Y, Guerra LT, Li ZK, Ludwig M, Dismukes GC, Bryant DA: Altered carbohydrate metabolism in glycogen synthase mutants of Synechococcus sp strain PCC 7002: Cell factories for soluble sugars. Metab Eng 2013, 16:56-67.
  • [19]Guerra LT, Levitan O, Frada MJ, Sun JS, Falkowski PG, Dismukes GC: Regulatory branch points affecting protein and lipid biosynthesis in the diatom Phaeodactylum tricornutum. Biomass Bioenergy 2013, 59:306-315.
  • [20]Harris EH: The Chlamydomonas Sourcebook: Introduction to Chlamydomonas and Its Laboratory Use. Academic Press, Oxford UK; 1989.
  • [21]Tsygankov AA, Kosourov SN, Tolstygina IV, Ghirardi ML, Seibert M: Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions. Int J Hydrogen Energy 2006, 31:1574-1584.
  • [22]Laurinavichene TV, Fedorov AS, Ghirardi ML, Seibert M, Tsygankov AA: Demonstration of sustained hydrogen photoproduction by immobilized, sulfur-deprived Chlamydomonas reinhardtii cells. Int J Hydrogen Energy 2006, 31:659-667.
  • [23]Ludwig M, Bryant DA: Synechococcus sp. strain PCC 7002 transcriptome: acclimation to temperature, salinity, oxidative stress, and mixotrophic growth conditions. Front Microbiol 2012, 3:354.
  • [24]Stevens SE, Myers J: The production of hydrogen peroxide by blue-green algae – a survey. J Phycol 1973, 9:427-430.
  • [25]Eldridge D: A novel approach to photosynthesis practicals. School Sci Rev 2004, 85:37-45.
  • [26]Rajabzadeh M: Determination of unknown concentrations of sodium acetate using the method of standard addition and proton NMR: an experiment for the undergraduate analytical chemistry laboratory. J Chem Educ 2012, 89:1454-1457.
  文献评价指标  
  下载次数:98次 浏览次数:28次