期刊论文详细信息
BMC Cancer
Molecular pathways undergoing dramatic transcriptomic changes during tumor development in the human colon
Nicola Ancona4  Giancarlo Marra6  Angelo Andriulli3  Federico Buffoli1  Teresa Staiano1  Orazio Palumbo2  Massimo Carella2  Anna Panza3  Ada Piepoli3  Endre Laczko5  Elisa Cattaneo6  Vania Cosma Liuzzi4  Rosalia Maglietta4 
[1]Endoscopy and Gastroenterology Unit, Hospital of Cremona, Cremona, Italy
[2]Servizio di Genetica Medica IRCCS “Casa Sollievo della Sofferenza” Ospedale, Viale Cappuccini, 71013, San Giovanni Rotondo, (FG), Italy
[3]Divisione di Gastroenterologia IRCCS “Casa Sollievo della Sofferenza” Ospedale, Viale Cappuccini, 71013, San Giovanni Rotondo, (FG), Italy
[4]Istituto di Studi sui Sistemi Intelligenti per l'Automazione - C.N.R., Via Amendola 122/D-I, 70126 Bari, Italy
[5]Functional Genomics Center, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
[6]Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
关键词: Random set method;    Cell cycle pathways;    Molecular pathways;    Transcriptomics;    Colorectal cancer;    Colorectal adenoma;   
Others  :  1080006
DOI  :  10.1186/1471-2407-12-608
 received in 2012-06-09, accepted in 2012-12-13,  发布年份 2012
PDF
【 摘 要 】

Background

The malignant transformation of precancerous colorectal lesions involves progressive alterations at both the molecular and morphologic levels, the latter consisting of increases in size and in the degree of cellular atypia. Analyzing preinvasive tumors of different sizes can therefore shed light on the sequence of these alterations.

Methods

We used a molecular pathway-based approach to analyze transcriptomic profiles of 59 colorectal tumors representing early and late preinvasive stages and the invasive stage of tumorigenesis. Random set analysis was used to identify biological pathways enriched for genes differentially regulated in tumors (compared with 59 samples of normal mucosa).

Results

Of the 880 canonical pathways we investigated, 112 displayed significant tumor-related upregulation or downregulation at one or more stages of tumorigenesis. This allowed us to distinguish between pathways whose dysregulation is probably necessary throughout tumorigenesis and those whose involvement specifically drives progression from one stage to the next. We were also able to pinpoint specific changes within each gene set that seem to play key roles at each transition. The early preinvasive stage was characterized by cell-cycle checkpoint activation triggered by DNA replication stress and dramatic downregulation of basic transmembrane signaling processes that maintain epithelial/stromal homeostasis in the normal mucosa. In late preinvasive lesions, there was also downregulation of signal transduction pathways (e.g., those mediated by G proteins and nuclear hormone receptors) involved in cell differentiation and upregulation of pathways governing nuclear envelope dynamics and the G2>M transition in the cell cycle. The main features of the invasive stage were activation of the G1>S transition in the cell cycle, upregulated expression of tumor-promoting microenvironmental factors, and profound dysregulation of metabolic pathways (e.g., increased aerobic glycolysis, downregulation of pathways that metabolize drugs and xenobiotics).

Conclusions

Our analysis revealed specific pathways whose dysregulation might play a role in each transition of the transformation process. This is the first study in which such an approach has been used to gain further insights into colorectal tumorigenesis. Therefore, these data provide a launchpad for further exploration of the molecular characterization of colorectal tumorigenesis using systems biology approaches.

【 授权许可】

   
2012 Maglietta et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20141202220501123.pdf 2652KB PDF download
Figure 4. 101KB Image download
Figure 3. 157KB Image download
Figure 2. 307KB Image download
Figure 1. 47KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Cattaneo E, Baudis M, Buffoli F, Bianco MA, Zorzi F, Marra G: Pathways and crossroads to colorectal cancer. Pre-Invasive Disease: Pathogenesis and Clinical Management. Springer: In: R.C. Fitzgerald, editors ; 2011:369-394.
  • [2]Peipens LA, Sandler RS: Epidemiology of colorectal adenomas. Epidemiol Rev 1994, 16:273-297.
  • [3]Noshirwani KC, Van Stolk RU, Rybicki LA, Beck GJ: Adenoma size and number are predictive of adenoma recurrence: implications for surveillance colonoscopy. Gastrointest Endosc 2000, 51:433-437.
  • [4]Powell SM, Zilz N, Beazer-Barclay Y, et al.: APC mutations occur early during colorectal tumorigenesis. Nature 1992, 359:235-237.
  • [5]Morin PJ, Sparks AB, Korinek V, et al.: Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 1997, 275:1787-1790.
  • [6]Rosenberg DW, Yang S, Pleau DC, et al.: Mutations in BRAF and KRAS differentially distinguish serrated versus non-serrated hyperplastic aberrant crypt foci in humans. Cancer Res 2007, 67:3551-3554.
  • [7]Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, Szabo S, Buckhaults P, et al.: The consensus coding sequences of human breast and colorectal cancers. Science 2006, 314:268-274.
  • [8]Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, Cui H, Gabo K, Rongione M, Webster M, Ji H, Potash JB, Sabunciyan S, Feinberg AP: Genome-wide methylation analysis of human colon cancer reveals similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 2009, 41(2):178-186.
  • [9]Gaiser T, Camps J, Meinhardt S, Wangsa D, Nguyen QT, Varma S, Dittfeld C, Kunz-Schughart LA, Kemmerling R, Becker MR, Heselmeyer-Haddad K, Ried T: Genome and transcriptome profiles of CD133-positive colorectal cancer cells. Am J Pathol 2011, 178(4):1478-1488.
  • [10]Habermann JK, Paulsen U, Roblick UJ, Upender MB, McShane LM, Korn EL, Wangsa D, Krüger S, Duchrow M, Bruch HP, Auer G, Ried T: Stage-specific alterations of the genome, transcriptome, and proteome during colorectal carcinogenesis. Genes Chromosomes Cancer 2007, 46(1):10-26.
  • [11]Kleivi K, Lind GE, Diep CB, Meling GI, Brandal LT, Nesland JM, Myklebost O, Rognum TO, Giercksky KE, Skotheim RI, Lothe RA: Gene expression profiles of primary colorectal carcinomas, liver metastases, and carcinomatoses. Mol Cancer 2007, 6:2. BioMed Central Full Text
  • [12]Sabates-Bellver J, Van der Flier L, De Palo M, Cattaneo E, Maake C, Rehraue Laczko E, Kurowski MA, Bujnicki JM, Menigatti M, Luz J, Ranalli TV, Gomes V, Pastorelli A, Faggiani R, Anti M, Jiricny J, Clevers H, Marra G: Transcriptome profile of human colorectal cancer. Mol Cancer Res 2007, 5(12):1263-1275.
  • [13]Maglietta R, Distaso A, Piepoli A, Palumbo O, Carella M, D’Addabbo A, Mukherjee S, Ancona N: On the reproducibility of results of pathway analysis in genome-wide expression studies of colorectal cancer. J Biomed Inform 2010, 43:397-406.
  • [14]Abatangelo L, Maglietta R, Distaso A, D’Addabbo A, Creanza TM, Mukherjee S, Ancona N: Comparative study of gene set enrichment methods. BMC Bioinforma 2009, 10:275. BioMed Central Full Text
  • [15]Maglietta R, Piepoli A, Catalano D, Liciulli F, Carella M, Liuni S, Pesole G, Perri F, Ancona N: Statistical assessment of functional categories of genes deregulated in pathological conditions by using microarray data. Bioinformatics 2007, 23:2063-2072.
  • [16]Subramanian A, Tamayo P, Mootha V, Mukherjee S, Ebert B, et al.: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci 2005, 102:15545-15550.
  • [17]Newton MA, Quintana FA, Den Boon JA, Sengupta S, Ahlquist P: Random-Set methods identify distinct aspect of the enrichment signal in gene-set analysis. The Annals of Applied Statistics 2007, 1(1):85-106.
  • [18]Cattaneo E, Laczko E, Buffoli F, Zorzi F, Bianco MA, Menigatti M, Bartosova Z, Haider R, Helmchen B, Sabates-Bellver J, Tiwari A, Jiricny J, Marra G: Preinvasive colorectal lesion transcriptomes correlate with endoscopic morphology (polypoid vs. non polypoid). EMBO Mol Med 2011, 3:334-347.
  • [19]Good P: Permutation tests: a practical guide to resampling methods for testing hypothesis. New York: Springer; 1994.
  • [20]Schwartz GK, Shah MA: Targeting the cell cycle: a new approach to cancer therapy. J Clin Oncol 2005, 23:9408-9421.
  • [21]Müller H, Moroni MC, Vigo E, Petersen BO, Bartek J, Helin K: Induction of S-phase entry by E2F transcription factors depends on their nuclear localization. Mol Cell Biol 1997, 17:5508-5520.
  • [22]Suzuki T, Yasui W, Yokozaki H, Naka K, Ishikawa T, Tahara E: Expression of the E2F family in human gastrointestinal carcinomas. Int J Cancer 1999, 81:535-538.
  • [23]Banerjee D, Gorlick R, Liefshitz A, et al.: Levels of E2F-1 expression are higher in lung metastasis of colon cancer as compared with hepatic metastasis and correlate with levels of thymidylate synthase. Cancer Res 2000, 60:2365-2367.
  • [24]Kaur M, Singh RP, Gu M, Agarwal R, Agarwal C: Grape seed extract inhibits in vitro and in vivo growth of human colorectal carcinoma cells. Clin Cancer Res 2006, 12:6194-6202.
  • [25]Ciaparrone M, Yamamoto H, Sgambato A, Cattoretti G, Tomita N, Monden T, Rotterdam H, Weinstein B: Localization and Expression of p27KIP1 in Multistage Colorectal Carcinogenesis. Cancer Res 1998, 58:114-122.
  • [26]Gope R, Christensen MA, Thorson A, Lynch HT, Smyrk T, Hodgson C, Wildrick DM, Gope ML, Boman BM: Increased expression of the retinoblastoma gene in human colorectal carcinomas relative to normal colonic mucosa. J Natl Cancer Inst 1990, 82:310-314.
  • [27]Gope R, Gope ML: Abundance and state of phosphorylation of the retinoblastoma susceptibility gene product in human colon cancer. Mol Cell Biochem 1992, 110:123-133.
  • [28]Yamamoto H, Soh JW, Monden T, Klein MG, Zhang LM, Shirin H, Arber N, Tomita N, Schieren I, Stein CA, Weinstein IB: Paradoxical increase in retinoblastoma protein in colorectal carcinomas may protect cells from apoptosis. Clin Cancer Res 1999, 5(7):1805-1815.
  • [29]Yasui W, Fujimoto J, Suzuki T, Ono S, Naka K, Yokozaki H, Tahara E: Expression of cell-cycle-regulating transcription factor E2F-1 in colorectal carcinomas. Pathobiology 1999, 67:174-179.
  • [30]Enders GH: Colon cancer metastasis: is E2F-1 a driving force? Cancer Biol Ther 2004, 3(4):400-401.
  • [31]Tian Y, Ge B, Zhang B: The expression and clinical significance of pRB and E2F1 in human neuroendocrine lung tumor. Zhonghua Yi Xue Za Zhi 2001, 81(4):219-221.
  • [32]Ebihara Y, Miyamoto M, Shichinohe T, Kawarada Y, Cho Y, Fukunaga A, Murakami S, Uehara H, Kaneko H, Hashimoto H, Murakami Y, Itoh T, Okushiba S, Kondo S, Katoh H: Over-expression of E2F-1 in esophageal squamous cell carcinoma correlates with tumor progression. Dis Esophagus 2004, 17(2):150-154.
  • [33]Suh DS, Yoon MS, Choi KU, Kim JY: Significance of E2F-1 overexpression in epithelial ovarian cancer. Int J Gynecol Cancer 2008, 18(3):492-498.
  • [34]Toyota M, Ahuja N, Ohe-Toyota M, et al.: CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A 1999, 96:8681-8686.
  • [35]Marra G, Jiricny J: DNA mismatch repair and colon cancer. In Genome instability in cancer development (advances in experimental medicine and biology). Edited by Nigg E. New York: Springer; 2005:85-123.
  • [36]Nosho K, Irahara N, Shima K, et al.: Comprehensive biostatistical analysis of CpG island methylator phenotype in colorectal cancer using a large population-based sample. PLoS One 2008, 3:e3698.
  • [37]Lukas J, Petersen BO, Holm K, Bartek J, Helin K: Deregulated expression of E2F family members induces S-phase entry and overcomes p16INK4A-mediated growth suppression. Mol Cell Biol 1996, 16(3):1047-1057.
  • [38]Gardina PJ, Clark TA, Shimada B, Staples MK, Yang Q, Veitch J, et al.: Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array. BMC Genomics 2006, 7:325. BioMed Central Full Text
  • [39]Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, et al.: Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 2006, 444:633-637.
  • [40]Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, et al.: Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 2005, 434:907-913.
  • [41]Freeman A, Morris LS, Mills AD, Stoeber K, Laskey RA, et al.: Minichromosome maintenance proteins as biological markers of dysplasia and malignancy. Clin Cancer Res 1999, 5:2121-2132.
  • [42]Klapacz J, Lingaraju GM, Guo HH, Shah D, Moar-Shoshani A, et al.: Frameshift mutagenesis and microsatellite instability induced by human alkyladenine DNA glycosylase. Mol Cell 2010, 37:843-853.
  • [43]Saporita AJ, Maggi LB Jr, Apicelli AJ, Weber JD: Therapeutic targets in the ARF tumor suppressor pathway. Curr Med Chem 2007, 14:1815-1827.
  • [44]Van Steeg H, Mullenders LH, Vijg J: Mutagenesis and carcinogenesis in nucleotide excision repair-deficient XPA knock out mice. Mutat Res 2000, 450:167-180.
  • [45]Beerenwinkel N, Antal T, Dingli D, Traulsen A, Kinzler KW, et al.: Genetic progression and the waiting time to cancer. PLoS Comput Biol 2007, 3:e225.
  • [46]Clarke PR, Zhang C: Spatial and temporal coordination of mitosis by Ran GTPase. Nat Rev Mol Cell Biol 2008, 9:464-477.
  • [47]Yam AY, Xia Y, Lin HT, Burlingame A, Gerstein M, et al.: Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies. Nat Struct Mol Biol 2008, 15:1255-1262.
  • [48]Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell 2011, 144:646-674.
  • [49]Qian BZ, Pollard JW: Macrophage diversity enhances tumor progression and metastasis. Cell 2010, 141:39-51.
  • [50]Cullen SP, Brunet M, Martin SJ: Granzymes in cancer and immunity. Cell Death Differ 2010, 17:616-623.
  • [51]Chakravarti D, Hong R: SET-ting the stage for life and death. Cell 2003, 112:589-591.
  • [52]Muto S, Senda M, Akai Y, Sato L, Suzuki T, et al.: Relationship between the structure of SET/TAF-Ibeta/INHAT and its histone chaperone activity. Proc Natl Acad Sci U S A 2007, 104:4285-4290.
  • [53]Warburg O: On the origin of cancer cells. Science 1956, 123:309-314.
  • [54]Vander Heiden MG, Cantley LC, Thompson CB: Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009, 324:1029-1033.
  文献评价指标  
  下载次数:34次 浏览次数:11次