期刊论文详细信息
BMC Cancer
[18F]FDG and [18F]FLT positron emission tomography imaging following treatment with belinostat in human ovary cancer xenografts in mice
Andreas Kjær1  Liselotte Højgaard1  Maxwell Sehested2  Peter Buhl Jensen2  Jacob Madsen1  Fredrik Björkling3  Camilla Bardram Johnbeck1  Kamille Dumong Erichsen2  Mette Munk Jensen1 
[1]Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Denmark
[2]Topotarget A/S, Symbion Science Park, Fruebjergvej 3, Copenhagen, 2100, Denmark
[3]Present address: Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
关键词: Computed tomography (CT);    [18F]FDG;    [18F]FLT;    Histone deacetylase inhibitor;    Belinostat;    Positron emission tomography (PET);   
Others  :  1079822
DOI  :  10.1186/1471-2407-13-168
 received in 2012-09-05, accepted in 2013-03-20,  发布年份 2013
PDF
【 摘 要 】

Background

Belinostat is a histone deacetylase inhibitor with anti-tumor effect in several pre-clinical tumor models and clinical trials. The aim of the study was to evaluate changes in cell proliferation and glucose uptake by use of 3’-deoxy-3’-[18F]fluorothymidine ([18F]FLT) and 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET) following treatment with belinostat in ovarian cancer in vivo models.

Methods

In vivo uptake of [18F]FLT and [18F]FDG in human ovary cancer xenografts in mice (A2780) were studied after treatment with belinostat. Mice were divided in 2 groups receiving either belinostat (40 mg/kg ip twice daily Day 0–4 and 6–10) or vehicle. Baseline [18F]FLT or [18F]FDG scans were made before treatment (Day 0) and repeated at Day 3, 6 and 10. Tracer uptake was quantified using small animal PET/CT.

Results

Tumors in the belinostat group had volumes that were 462 ± 62% (640 mm3) at Day 10 relative to baseline which was significantly different (P = 0.011) from the control group 769 ± 74% (926 mm3). [18F]FLT SUVmax increased from baseline to Day 10 (+30 ± 9%; P = 0.048) in the control group. No increase was observed in the treatment group. [18F]FDG SUVmean was significantly different in the treatment group compared to the control group (P = 0.0023) at Day 10. Within treatment groups [18F]FDG uptake and to a lesser extent [18F]FLT uptake at Day 3 were significantly correlated with tumor growth at Day 10.

Conclusions

[18F]FDG uptake early following treatment initiation predicted tumor sizes at Day 10, suggesting that [18F]FDG may be a valuable biomarker for non-invasive assessment of anti-tumor activity of belinostat.

【 授权许可】

   
2013 Munk Jensen et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20141202204500556.pdf 677KB PDF download
Figure 6. 48KB Image download
Figure 5. 58KB Image download
Figure 4. 56KB Image download
Figure 3. 106KB Image download
Figure 2. 70KB Image download
Figure 1. 46KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Arner ES, Eriksson S: Mammalian deoxyribonucleoside kinases. Pharmacol Ther 1995, 67:155-186.
  • [2]Barthel H, Perumal M, Latigo J, He Q, Brady F, Luthra SK: The uptake of 3'-deoxy-3'-[18 F]fluorothymidine into L5178Y tumours in vivo is dependent on thymidine kinase 1 protein levels. Eur J Nucl Med Mol Imaging 2005, 32:257-263.
  • [3]Kong XB, Zhu QY, Vidal PM, Watanabe KA, Polsky B, Armstrong D: Comparisons of anti-human immunodeficiency virus activities, cellular transport, and plasma and intracellular pharmacokinetics of 3'-fluoro-3'-deoxythymidine and 3'-azido-3'-deoxythymidine. Antimicrob Agents Chemother 1992, 36:808-818.
  • [4]Rasey JS, Grierson JR, Wiens LW, Kolb PD, Schwartz JL: Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med 2002, 43:1210-1217.
  • [5]Sherley JL, Kelly TJ: Regulation of human thymidine kinase during the cell cycle. J Biol Chem 1988, 263:8350-8358.
  • [6]Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM: Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 1998, 4:1334-1336.
  • [7]Apisarnthanarax S, Alauddin MM, Mourtada F, Ariga H, Raju U, Mawlawi O: Early detection of chemoradioresponse in esophageal carcinoma by 3'-deoxy-3'-3H-fluorothymidine using preclinical tumor models. Clin Canc Res 2006, 12:4590-4597.
  • [8]Barthel H, Cleij MC, Collingridge DR, Hutchinson OC, Osman S, He Q: 3'-deoxy-3'-[18 F]fluorothymidine as a new marker for monitoring tumor response to antiproliferative therapy in vivo with positron emission tomography. Canc Res 2003, 63:3791-3798.
  • [9]Brepoels L, Stroobants S, Verhoef G, De GT, Mortelmans L, De Wolf-Peeters C: 18 F-FDG and 18 F-FLT Uptake Early After Cyclophosphamide and mTOR Inhibition in an Experimental Lymphoma Model. J Nucl Med 2009, 50:1102-1109.
  • [10]Leyton J, Latigo JR, Perumal M, Dhaliwal H, He Q, Aboagye EO: Early detection of tumor response to chemotherapy by 3'-deoxy-3'-[18 F]fluorothymidine positron emission tomography: the effect of cisplatin on a fibrosarcoma tumor model in vivo. Canc Res 2005, 65:4202-4210.
  • [11]Leyton J, Alao JP, Da CM, Stavropoulou AV, Latigo JR, Perumal M: In vivo biological activity of the histone deacetylase inhibitor LAQ824 is detectable with 3'-deoxy-3'-[18 F]fluorothymidine positron emission tomography. Canc Res 2006, 66:7621-7629.
  • [12]Manning HC, Merchant NB, Foutch AC, Virostko JM, Wyatt SK, Shah C: Molecular imaging of therapeutic response to epidermal growth factor receptor blockade in colorectal cancer. Clin Canc Res 2008, 14:7413-7422.
  • [13]Molthoff CF, Klabbers BM, Berkhof J, Felten JT, van Gelder M, Windhorst AD: Monitoring response to radiotherapy in human squamous cell cancer bearing nude mice: comparison of 2'-deoxy-2'-[18 F]fluoro-D-glucose (FDG) and 3'-[18 F]fluoro-3'-deoxythymidine (FLT). Mol Imaging Biol 2007, 9:340-347.
  • [14]Oyama N, Ponde DE, Dence C, Kim J, Tai YC, Welch MJ: Monitoring of therapy in androgen-dependent prostate tumor model by measuring tumor proliferation. J Nucl Med 2004, 45:519-525.
  • [15]Shah C, Miller TW, Wyatt SK, McKinley ET, Olivares MG, Sanchez V: Imaging biomarkers predict response to anti-HER2 (ErbB2) therapy in preclinical models of breast cancer. Clin Canc Res 2009, 15:4712-4721.
  • [16]Waldherr C, Mellinghoff IK, Tran C, Halpern BS, Rozengurt N, Safaei A: Monitoring antiproliferative responses to kinase inhibitor therapy in mice with 3'-deoxy-3'-18 F-fluorothymidine PET. J Nucl Med 2005, 46:114-120.
  • [17]Yang YJ, Ryu JS, Kim SY, Oh SJ, Im KC, Lee H: Use of 3'-deoxy-3'-[18 F]fluorothymidine PET to monitor early responses to radiation therapy in murine SCCVII tumors. Eur J Nucl Med Mol Imaging 2006, 33:412-419.
  • [18]Buck AK, Schirrmeister H, Hetzel M, Von Der HM, Halter G, Glatting G: 3-deoxy-3-[(18)F]fluorothymidine-positron emission tomography for noninvasive assessment of proliferation in pulmonary nodules. Canc Res 2002, 62:3331-3334.
  • [19]Vesselle H, Grierson J, Muzi M, Pugsley JM, Schmidt RA, Rabinowitz P: In vivo validation of 3'deoxy-3'-[(18)F]fluorothymidine ([(18)F]FLT) as a proliferation imaging tracer in humans: correlation of [(18)F]FLT uptake by positron emission tomography with Ki-67 immunohistochemistry and flow cytometry in human lung tumors. Clin Canc Res 2002, 8:3315-3323.
  • [20]Yamamoto Y, Nishiyama Y, Ishikawa S, Nakano J, Chang SS, Bandoh S: Correlation of 18 F-FLT and 18 F-FDG uptake on PET with Ki-67 immunohistochemistry in non-small cell lung cancer. Eur J Nucl Med Mol Imaging 2007, 34:1610-1616.
  • [21]Weber WA, Wieder H: Monitoring chemotherapy and radiotherapy of solid tumors. Eur J Nucl Med Mol Imaging 2006, 33(Suppl 1):27-37.
  • [22]Weber WA: Assessing tumor response to therapy. J Nucl Med 2009, 50(Suppl 1):1S-10S.
  • [23]Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R: New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Canc 2009, 45:228-247.
  • [24]Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L: New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Canc Inst 2000, 92:205-216.
  • [25]Wahl RL, Jacene H, Kasamon Y, Lodge MA: From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. J Nucl Med 2009, 50(Suppl 1):122S-150S.
  • [26]Plumb JA, Finn PW, Williams RJ, Bandara MJ, Romero MR, Watkins CJ: Pharmacodynamic response and inhibition of growth of human tumor xenografts by the novel histone deacetylase inhibitor PXD101. Mol Canc Ther 2003, 2:721-728.
  • [27]Qian X, LaRochelle WJ, Ara G, Wu F, Petersen KD, Thougaard A: Activity of PXD101, a histone deacetylase inhibitor, in preclinical ovarian cancer studies. Mol Canc Ther 2006, 5:2086-2095.
  • [28]Tumber A, Collins LS, Petersen KD, Thougaard A, Christiansen SJ, Dejligbjerg M: The histone deacetylase inhibitor PXD101 synergises with 5-fluorouracil to inhibit colon cancer cell growth in vitro and in vivo. Canc Chemother Pharmacol 2007, 60:275-283.
  • [29]Qian X, Ara G, Mills E, LaRochelle WJ, Lichenstein HS, Jeffers M: Activity of the histone deacetylase inhibitor belinostat (PXD101) in preclinical models of prostate cancer. Int J Canc 2008, 122:1400-1410.
  • [30]Monks A, Hose CD, Pezzoli P, Kondapaka S, Vansant G, Petersen KD: Gene expression-signature of belinostat in cell lines is specific for histone deacetylase inhibitor treatment, with a corresponding signature in xenografts. Anticancer Drugs 2009, 20:682-692.
  • [31]Gravina GL, Marampon F, Giusti I, Carosa E, Di SS, Ricevuto E: Differential effects of PXD101 (belinostat) on androgen-dependent and androgen-independent prostate cancer models. Int J Oncol 2012, 40:711-720.
  • [32]Ozols RF, Bookman MA, Connolly DC, Daly MB, Godwin AK, Schilder RJ: Focus on epithelial ovarian cancer. Canc Cell 2004, 5:19-24.
  • [33]Molife LR, de Bono JS: Belinostat: clinical applications in solid tumors and lymphoma. Expert Opin Investig Drugs 2011, 20:1723-1732.
  • [34]Gimsing P, Hansen M, Knudsen LM, Knoblauch P, Christensen IJ, Ooi CE: A phase I clinical trial of the histone deacetylase inhibitor belinostat in patients with advanced hematological neoplasia. Eur J Haematol 2008, 81:170-176.
  • [35]Lassen U, Molife LR, Sorensen M, Engelholm SA, Vidal L, Sinha R: A phase I study of the safety and pharmacokinetics of the histone deacetylase inhibitor belinostat administered in combination with carboplatin and/or paclitaxel in patients with solid tumours. Br J Canc 2010, 103:12-17.
  • [36]Steele NL, Plumb JA, Vidal L, Tjornelund J, Knoblauch P, Rasmussen A: A phase 1 pharmacokinetic and pharmacodynamic study of the histone deacetylase inhibitor belinostat in patients with advanced solid tumors. Clin Canc Res 2008, 14:804-810.
  • [37]Mackay HJ, Hirte H, Colgan T, Covens A, MacAlpine K, Grenci P: Phase II trial of the histone deacetylase inhibitor belinostat in women with platinum resistant epithelial ovarian cancer and micropapillary (LMP) ovarian tumours. Eur J Canc 2010, 46:1573-1579.
  • [38]Dizon DS, Blessing JA, Penson RT, Drake RD, Walker JL, Johnston CM: A phase II evaluation of belinostat and carboplatin in the treatment of recurrent or persistent platinum-resistant ovarian, fallopian tube, or primary peritoneal carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol 2012, 125:367-371.
  • [39]Dizon DS, Damstrup L, Finkler NJ, Lassen U, Celano P, Glasspool R: Phase II Activity of Belinostat (PXD-101), Carboplatin, and Paclitaxel in Women With Previously Treated Ovarian Cancer. Int J Gynecol Canc 2012, 22:979-986.
  • [40]Stimson L, La Thangue NB: Biomarkers for predicting clinical responses to HDAC inhibitors. Canc Lett 2009, 280:177-183.
  • [41]Jensen MM, Erichsen KD, Bjorkling F, Madsen J, Jensen PB, Hojgaard L: Early detection of response to experimental chemotherapeutic Top216 with [18 F]FLT and [18 F]FDG PET in human ovary cancer xenografts in mice. PLoS One 2010, 5:e12965.
  • [42]Jensen MM, Jorgensen JT, Binderup T, Kjaer A: Tumor volume in subcutaneous mouse xenografts measured by microCT is more accurate and reproducible than determined by 18 F-FDG-microPET or external caliper. BMC Med Imaging 2008, 8:16. BioMed Central Full Text
  • [43]Fueger BJ, Czernin J, Hildebrandt I, Tran C, Halpern BS, Stout D: Impact of animal handling on the results of 18 F-FDG PET studies in mice. J Nucl Med 2006, 47:999-1006.
  • [44]Hellemans J, Mortier G, De PA, Speleman F, Vandesompele J: qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 2007, 8:R19. BioMed Central Full Text
  • [45]Dokmanovic M, Marks PA: Prospects: histone deacetylase inhibitors. J Cell Biochem 2005, 96:293-304.
  • [46]Dittmann H, Dohmen BM, Kehlbach R, Bartusek G, Pritzkow M, Sarbia M: Early changes in [18 F]FLT uptake after chemotherapy: an experimental study. Eur J Nucl Med Mol Imaging 2002, 29:1462-1469.
  • [47]Plotnik DA, McLaughlin LJ, Krohn KA, Schwartz JL: The effects of 5-fluoruracil treatment on 3'-fluoro-3'-deoxythymidine (FLT) transport and metabolism in proliferating and non-proliferating cultures of human tumor cells. Nucl Med Biol 2012, 39:970-976.
  • [48]Na YS, Jung KA, Kim SM, Hong YS, Ryu MH, Jang SJ: The histone deacetylase inhibitor PXD101 increases the efficacy of irinotecan in in vitro and in vivo colon cancer models. Canc Chemother Pharmacol 2011, 68:389-398.
  • [49]Munk JM, Erichsen KD, Bjorkling F, Madsen J, Jensen PB, Sehested M: 18 F]FLT PET for non-invasive assessment of tumor sensitivity to chemotherapy: studies with experimental chemotherapy TP202377 in human cancer xenografts in mice. PLoS One 2012, 7:e50618.
  • [50]Aide N, Kinross K, Cullinane C, Roselt P, Waldeck K, Neels O: 18 F-FLT PET as a Surrogate Marker of Drug Efficacy During mTOR Inhibition by Everolimus in a Preclinical Cisplatin-Resistant Ovarian Tumor Model. J Nucl Med 2010, 51:1559-1564.
  • [51]Perumal M, Stronach EA, Gabra H, Aboagye EO: Evaluation of 2-deoxy-2-[18 F]fluoro-D-glucose- and 3'-deoxy-3'-[18 F]fluorothymidine-positron emission tomography as biomarkers of therapy response in platinum-resistant ovarian cancer. Mol Imaging Biol 2012, 14:753-761.
  • [52]Wardell SE, Ilkayeva OR, Wieman HL, Frigo DE, Rathmell JC, Newgard CB: Glucose metabolism as a target of histone deacetylase inhibitors. Mol Endocrinol 2009, 23:388-401.
  • [53]Hiyoshi Y, Watanabe M, Imamura Y, Nagai Y, Baba Y, Yoshida N: The relationship between the glucose transporter type 1 expression and F-fluorodeoxyglucose uptake in esophageal squamous cell carcinoma. Oncology 2009, 76:286-292.
  • [54]Kaira K, Endo M, Abe M, Nakagawa K, Ohde Y, Okumura T: Biologic correlation of 2-[18 F]-fluoro-2-deoxy-D-glucose uptake on positron emission tomography in thymic epithelial tumors. J Clin Oncol 2010, 28:3746-3753.
  • [55]Tan PH, Bay BH, Yip G, Selvarajan S, Tan P, Wu J: Immunohistochemical detection of Ki67 in breast cancer correlates with transcriptional regulation of genes related to apoptosis and cell death. Mod Pathol 2005, 18:374-381.
  • [56]Yamamoto S, Ibusuki M, Yamamoto Y, Fu P, Fujiwara S, Murakami K: Clinical relevance of Ki67 gene expression analysis using formalin-fixed paraffin-embedded breast cancer specimens. Breast Canc 2012. 10.1007/s12282-012-0332-7
  文献评价指标  
  下载次数:14次 浏览次数:8次