期刊论文详细信息
Biotechnology for Biofuels
Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (I) mutant generation and characterization
René H Wijffels1  Gerrit Eggink2  Jan Springer2  Dirk E Martens1  René B Draaisma3  Ruben EM Verbeek1  Lenny de Jaeger2 
[1]Bioprocess Engineering and AlgaePARC, Wageningen University and Research Centre, PO Box 8129, 6700 EV Wageningen, The Netherlands
[2]Food and Biobased Research and AlgaePARC, Wageningen University and Research Centre, PO Box 17, 6700 AA Wageningen, The Netherlands
[3]Unilever Research and Development Vlaardingen, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands
关键词: Metabolism;    Acutodesmus obliquus;    Scenedesmus obliquus;    Biofuel;    Triacylglycerol (TAG);    Starch;    Starchless mutant;   
Others  :  792509
DOI  :  10.1186/1754-6834-7-69
 received in 2013-12-13, accepted in 2014-04-14,  发布年份 2014
PDF
【 摘 要 】

Background

Microalgae are a promising platform for producing neutral lipids, to be used in the application for biofuels or commodities in the feed and food industry. A very promising candidate is the oleaginous green microalga Scenedesmus obliquus, because it accumulates up to 45% w/w triacylglycerol (TAG) under nitrogen starvation. Under these conditions, starch is accumulated as well. Starch can amount up to 38% w/w under nitrogen starvation, which is a substantial part of the total carbon captured. When aiming for optimized TAG production, blocking the formation of starch could potentially increase carbon allocation towards TAG. In an attempt to increase TAG content, productivity and yield, starchless mutants of this high potential strain were generated using UV mutagenesis. Previous studies in Chlamydomonas reinhardtii have shown that blocking the starch synthesis yields higher TAG contents, although these TAG contents do not surpass those of oleaginous microalgae yet. So far no starchless mutants in oleaginous green microalgae have been isolated that result in higher TAG productivities.

Results

Five starchless mutants have been isolated successfully from over 3,500 mutants. The effect of the mutation on biomass and total fatty acid (TFA) and TAG productivity under nitrogen-replete and nitrogen-depleted conditions was studied. All five starchless mutants showed a decreased or completely absent starch content. In parallel, an increased TAG accumulation rate was observed for the starchless mutants and no substantial decrease in biomass productivity was perceived. The most promising mutant showed an increase in TFA productivity of 41% at 4 days after nitrogen depletion, reached a TAG content of 49.4% (% of dry weight) and had no substantial change in biomass productivity compared to the wild type.

Conclusions

The improved S. obliquus TAG production strains are the first starchless mutants in an oleaginous green microalga that show enhanced TAG content under photoautotrophic conditions. These results can pave the way towards a more feasible microalgae-driven TAG production platform.

【 授权许可】

   
2014 de Jaeger et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705032139224.pdf 1257KB PDF download
Figure 5. 105KB Image download
Figure 4. 69KB Image download
Figure 3. 65KB Image download
Figure 2. 125KB Image download
Figure 1. 66KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Chisti Y: Biodiesel from microalgae. Biotechnol Adv 2007, 25(3):294-306.
  • [2]Niyogi KK: Safety valves for photosynthesis. Curr Opin Plant Biol 2000, 3(6):455-460.
  • [3]Wijffels RH, Barbosa MJ, Eppink MHM: Microalgae for the production of bulk chemicals and biofuels. Biofuels Bioprod Biorefin 2010, 4(3):287-295.
  • [4]Draaisma RB, Wijffels RH, Slegers PM, Brentner LB, Roy A, Barbosa MJ: Food commodities from microalgae. Curr Opin Biotechnol 2013, 24(2):169-177.
  • [5]Haik Y, Selim MYE, Abdulrehman T: Combustion of algae oil methyl ester in an indirect injection diesel engine. Energy 2011, 36(3):1827-1835.
  • [6]Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A: Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 2008, 54(4):621-639.
  • [7]Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH: Effect of light intensity, pH, and temperature on triacylglycerol (TAG) accumulation induced by nitrogen starvation in Scenedesmus obliquus. Bioresour Technol 2013, 143:1-9.
  • [8]Santos AM, Janssen M, Lamers PP, Evers WAC, Wijffels RH: Growth of oil accumulating microalga Neochloris oleoabundans under alkaline-saline conditions. Bioresour Technol 2012, 104:593-599.
  • [9]Ledford HK, Niyogi KK: Singlet oxygen and photo-oxidative stress management in plants and algae. Plant Cell Environ 2005, 28(8):1037-1045.
  • [10]Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH: The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresour Technol 2012, 124:217-226.
  • [11]Li Y, Han D, Hu G, Dauvillee D, Sommerfeld M, Ball S, Hu Q: Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metab Eng 2010, 12(4):387-391.
  • [12]Krienitz L, Bock C: Present state of the systematics of planktonic coccoid green algae of inland waters. Hydrobiologia 2012, 698(1):295-326.
  • [13]Vigeolas H, Duby F, Kaymak E, Niessen G, Motte P, Franck F, Remacle C: Isolation and partial characterization of mutants with elevated lipid content in Chlorella sorokiniana and Scenedesmus obliquus. J Biotechnol 2012, 162(1):3-12.
  • [14]Siaut M, Cuine S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beyly A, Beisson F, Triantaphylides C, Li-Beisson YH, Peltier G: Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol 2011, 11:7. BioMed Central Full Text
  • [15]Gouveia L, Oliveira AC: Microalgae as a raw material for biofuels production. J Ind Microbiol Biot 2009, 36(2):269-274.
  • [16]de Winter L, Klok AJ, Cuaresma Franco M, Barbosa MJ, Wijffels RH: The synchronized cell cycle of Neochloris oleoabundans and its influence on biomass composition under constant light conditions. Algal Res 2013, 2(4):313-320.
  • [17]Johnson X, Alric J: Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch. Eukaryot Cell 2013, 12(6):776-793.
  • [18]Radakovits R, Jinkerson RE, Darzins A, Posewitz MC: Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 2010, 9(4):486-501.
  • [19]Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG: Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 2010, 21(3):277-286.
  • [20]Li YT, Han DX, Hu GR, Sommerfeld M, Hu QA: Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol Bioeng 2010, 107(2):258-268.
  • [21]Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U: Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot Cell 2009, 8(12):1856-1868.
  • [22]Ball S, Marianne T, Dirick L, Fresnoy M, Delrue B, Decq A: A Chlamydomonas reinhardtii low-starch mutant is defective for 3-phosphoglycerate activation and orthophosphate inhibition of ADP-glucose pyrophosphorylase. Planta 1991, 185(1):17-26.
  • [23]Colleoni C, Dauvill ED, Mouille G, Bul on A, Gallant D, Bouchet B, Morell M, Samuel M, Delrue B, D’Hulst C, Bliard C, Nuzillard JM, Ball S: Genetic and biochemical evidence for the involvement of alpha-1,4 glucanotransferases in amylopectin synthesis. Plant Physiol 1999, 120(4):993-1003.
  • [24]Mouille G, Maddelein ML, Libessart N, Talaga P, Decq A, Delrue B, Ball S: Preamylopectin processing: a mandatory step for starch biosynthesis in plants. Plant Cell 1996, 8(8):1353-1366.
  • [25]Wattebled F, Ral JP, Dauvillee D, Myers AM, James MG, Schlichting R, Giersch C, Ball SG, D’Hulst C: STA11, a Chlamydomonas reinhardtii locus required for normal starch granule biogenesis, encodes disproportionating enzyme: further evidence for a function of alpha-1,4 glucanotransferases during starch granule biosynthesis in green algae. Plant Physiol 2003, 132(1):137-145.
  • [26]Zabawinski C, Van den Koornhuyse N, D'Hulst C, Schlichting R, Giersch C, Delrue B, Lacroix JM, Preiss J, Ball S: Starchless mutants of Chlamydomonas reinhardtii lack the small subunit of a heterotetrameric ADP-glucose pyrophosphorylase. J Bacteriol 2001, 183(3):1069-1077.
  • [27]Dunahay TG, Jarvis EE, Dais SS, Roessler PG: Manipulation of microalgal lipid production using genetic engineering. Appl Biochem Biotech 1996, 57–8:223-231.
  • [28]La Russa M, Bogen C, Uhmeyer A, Doebbe A, Filippone E, Kruse O, Mussgnug JH: Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii. J Biotechnol 2012, 162(1):13-20.
  • [29]Trentacoste EM, Shrestha RP, Smith SR, Glé C, Hartmann AC, Hildebrand M, Gerwick WH: Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc Natl Acad Sci 2013, 110:19748-19753.
  • [30]Griffiths MJ, Harrison STL: Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 2009, 21(5):493-507.
  • [31]Huo Y-X, Wernick DG, Liao JC: Toward nitrogen neutral biofuel production. Curr Opin Biotechnol 2012, 23(3):406-413.
  • [32]Li Y, Han D, Sommerfeld M, Hu Q: Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions. Bioresour Technol 2011, 102(1):123-129.
  • [33]Periappuram C, Steinhauer L, Barton DL, Taylor DC, Chatson B, Zou J: The plastidic phosphoglucomutase from Arabidopsis: a reversible enzyme reaction with an important role in metabolic control. Plant Physiol 2000, 122(4):1193-1200.
  • [34]Ral JP, Colleoni C, Wattebled F, Dauvillée D, Nempont C, Deschamps P, Li Z, Morell MK, Chibbar R, Purton S, D’Hulst C, Ball SG: Circadian clock regulation of starch metabolism establishes GBSSI as a major contributor to amylopectin synthesis in Chlamydomonas reinhardtii. Plant Physiol 2006, 142(1):305-317.
  • [35]Graf A, Schlereth A, Stitt M, Smith AM: Circadian control of carbohydrate availability for growth in Arabidopsis plants at night. Proc Natl Acad Sci 2010, 107(20):9458-9463.
  • [36]Gibon Y, Bläsing OE, Palacios-Rojas N, Pankovic D, Hendriks JHM, Fisahn J, Höhne M, Günther M, Stitt M: Adjustment of diurnal starch turnover to short days: depletion of sugar during the night leads to a temporary inhibition of carbohydrate utilization, accumulation of sugars and post-translational activation of ADP-glucose pyrophosphorylase in the following light period. Plant J 2004, 39(6):847-862.
  • [37]Caspar T, Huber SC, Somerville C: Alterations in growth, photosynthesis, and respiration in a starchless mutant of Arabidopsis thaliana (L.) deficient in chloroplast phosphoglucomutase activity. Plant Physiol 1985, 79(1):11-17.
  • [38]Gorman DS, Levine RP: Cytochrome f and plastocyanin: their sequence in photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc Natl Acad Sci U S A 1965, 54(6):1665.
  • [39]Work VH, Radakovits R, Jinkerson RE, Meuser JE, Elliott LG, Vinyard DJ, Laurens LML, Dismukes GC, Posewitz MC: Increased lipid accumulation in the Chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryot Cell 2010, 9(8):1251-1261.
  • [40]Breuer G, Evers WA, De Vree JH, Kleinegris DM, Martens DE, Wijffels RH, Lamers PP: Analysis of fatty acid content and composition in microalgae. J Vis Exp 2013., 1 Oct(80) doi:10.3791/50628
  文献评价指标  
  下载次数:30次 浏览次数:15次