期刊论文详细信息
Biology Direct
Sequence variability of Rhizobiales orthologs and relationship with physico-chemical characteristics of proteins
Humberto Peralta1  Gabriela Guerrero1  Alejandro Aguilar1  Jaime Mora1 
[1] Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México. Apdo. postal 565-A, Cuernavaca, Morelos, México
关键词: adaptation;    nonsynonymous substitution;    evolutionary rates;    comparative genomics;    rhizobia;   
Others  :  797092
DOI  :  10.1186/1745-6150-6-48
 received in 2011-04-11, accepted in 2011-10-04,  发布年份 2011
PDF
【 摘 要 】

Background

Chromosomal orthologs can reveal the shared ancestral gene set and their evolutionary trends. Additionally, physico-chemical properties of encoded proteins could provide information about functional adaptation and ecological niche requirements.

Results

We analyzed 7080 genes (five groups of 1416 orthologs each) from Rhizobiales species (S. meliloti, R. etli, and M. loti, plant symbionts; A. tumefaciens, a plant pathogen; and B. melitensis, an animal pathogen). We evaluated their phylogenetic relationships and observed three main topologies. The first, with closer association of R. etli to A. tumefaciens; the second with R. etli closer to S. meliloti; and the third with A. tumefaciens and S. meliloti as the closest pair. This was not unusual, given the close relatedness of these three species. We calculated the synonymous (dS) and nonsynonymous (dN) substitution rates of these orthologs, and found that informational and metabolic functions showed relatively low dN rates; in contrast, genes from hypothetical functions and cellular processes showed high dN rates. An alternative measure of sequence variability, percentage of changes by species, was used to evaluate the most specific proportion of amino acid residues from alignments. When dN was compared with that measure a high correlation was obtained, revealing that much of evolutive information was extracted with the percentage of changes by species at the amino acid level. By analyzing the sequence variability of orthologs with a set of five properties (polarity, electrostatic charge, formation of secondary structures, molecular volume, and amino acid composition), we found that physico-chemical characteristics of proteins correlated with specific functional roles, and association of species did not follow their typical phylogeny, probably reflecting more adaptation to their life styles and niche preferences. In addition, orthologs with low dN rates had residues with more positive values of polarity, volume and electrostatic charge.

Conclusions

These findings revealed that even when orthologs perform the same function in each genomic background, their sequences reveal important evolutionary tendencies and differences related to adaptation.

This article was reviewed by Dr. Purificación López-García, Prof. Jeffrey Townsend (nominated by Dr. J. Peter Gogarten), and Ms. Olga Kamneva.

【 授权许可】

   
2011 Peralta et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706033109102.pdf 1649KB PDF download
Figure 6. 108KB Image download
Figure 5. 19KB Image download
Figure 4. 264KB Image download
Figure 3. 32KB Image download
Figure 2. 134KB Image download
Figure 1. 175KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Hulsen T, Hynen MA, De Vlieg J, Groenen PMA: Benchmarking ortholog identification methods using functional genomics data. Genome Biol 2006, 7(4):R31. BioMed Central Full Text
  • [2]Huynen MA, Bork P: Measuring genome evolution. Proc Natl Acad Sci USA 1998, 95:5849-5856.
  • [3]Zheng XH, Lu F, Wang ZY, Zhong F, Hoover J, Mural R: Using shared genomic synteny and shared protein functions to enhance the identification of orthologous gene pairs. Bioinformatics 2005, 21(6):703-710.
  • [4]Guerrero G, Peralta H, Aguilar A, Diaz R, Villalobos MA, Medrano-Soto A, Mora J: Evolutionary, structural and functional relationships revealed by comparative analysis of syntenic genes in Rhizobiales. BMC Evol Biol 2005, 5:55. BioMed Central Full Text
  • [5]Soskine M, Tawfik DS: Mutational effects and the evolution of new protein functions. Nat Rev Genet 2010, 11:572-582.
  • [6]Hughes AL, Nei M: Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 1988, 335:167-170.
  • [7]Yang Z, Bielawski JP: Statistical methods for detecting molecular adaptation. Trends Ecol Evol 2000, 15:496-503.
  • [8]Yang Z: Maximum-likelihood models for combined analyses of multiple sequence data. J Mol Evol 1996, 42:587-596.
  • [9]Atchley WR, Zhao J, Fernandes AD, Drüke T: Solving the protein sequence metric problem. Proc Natl Acad Sci USA 2005, 102(18):6395-6400.
  • [10]Wood DW, Setubal JC, Kaul R, Monks DE, Kitajima JP, Okura VK, Zhou Y, Chen L, Wood GE, Almeida NF Jr, Woo L, Chen Y, Paulsen IT, Eisen JA, Karp PD, Bovee D Sr, Chapman P, Clendenning J, Deatherage G, Gillet W, Grant C, Kutyavin T, Levy R, Li MJ, McClelland E, Palmieri A, Raymond C, Rouse G, Saenphimmachak C, Wu Z, Romero P, Gordon D, Zhang S, Yoo H, Tao Y, Biddle P, Jung M, Krespan W, Perry M, Gordon-Kamm B, Liao L, Kim S, Hendrick C, Zhao ZY, Dolan M, Chumley F, Tingey SV, Tomb JF, Gordon MP, Olson MV, Nester EW: The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 2001, 294(5550):2317-2323.
  • [11]DelVecchio VG, Kapatral V, Redkar RJ, Patra G, Mujer C, Los T, Ivanova N, Anderson I, Bhattacharyya A, Lykidis A, Reznik G, Jablonski L, Larsen N, D'Souza M, Bernal A, Mazur M, Goltsman E, Selkov E, Elzer PH, Hagius S, O'Callaghan D, Letesson JJ, Haselkorn R, Kyrpides N, Overbeek R: The genome sequence of the facultative intracellular pathogen Brucella melitensis. Proc Natl Acad Sci USA 2002, 99(1):443-448.
  • [12]Goodner B, Hinkle G, Gattung S, Miller N, Blanchard M, Qurollo B, Goldman BS, Cao Y, Askenazi M, Halling C, Mullin L, Houmiel K, Gordon J, Vaudin M, Iartchouk O, Epp A, Liu F, Wollam C, Allinger M, Doughty D, Scott C, Lappas C, Markelz B, Flanagan C, Crowell C, Gurson J, Lomo C, Sear C, Strub G, Cielo C, Slater S: Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 2001, 294(5550):2323-2328.
  • [13]Paulsen IT, Seshadri R, Nelson KE, Eisen JA, Heidelberg JF, Read TD, Dodson RJ, Umayam L, Brinkac LM, Beanan MJ, Daugherty SC, Deboy RT, Durkin AS, Kolonay JF, Madupu R, Nelson WC, Ayodeji B, Kraul M, Shetty J, Malek J, Van Aken SE, Riedmuller S, Tettelin H, Gill SR, White O, Salzberg SL, Hoover DL, Lindler LE, Halling SM, Boyle SM, Fraser CM: The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts. Proc Natl Acad Sci USA 2002, 99(20):13148-13153.
  • [14]Halling SM, Peterson-Burch BD, Bricker BJ, Zuerner RL, Qing Z, Li LL, Kapur V, Alt DP, Olsen SC: Completion of the genome sequence of Brucella abortus and comparison to the highly similar genomes of Brucella melitensis and Brucella suis. J Bacteriol 2005, 187(8):2715-2726.
  • [15]Alsmark CM, Frank AC, Karlberg EO, Legault BA, Ardell DH, Canbäck B, Eriksson AS, Näslund AK, Handley SA, Huvet M, La Scola B, Holmberg M, Andersson SG: The louse-borne human pathogen Bartonella quintana is a genomic derivative of the zoonotic agent Bartonella henselae. Proc Natl Acad Sci USA 2004, 101(26):9716-9721.
  • [16]Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J: The composite genome of the legume symbiont Sinorhizobium meliloti. Science 2001, 293(5530):668-672.
  • [17]Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S: Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 2000, 7(6):331-338.
  • [18]González V, Santamaría RI, Bustos P, Hernández-González I, Medrano-Soto A, Moreno-Hagelsieb G, Janga SC, Ramírez MA, Jiménez-Jacinto V, Collado-Vides J, Dávila G: The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. Proc Natl Acad Sci USA 2006, 103(10):3834-3839.
  • [19]Pearson WR, Lipman DJ: Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 1988, 85(8):2444-2448.
  • [20]Thompson JD, Higgins DG, Gibson TJ: CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 1994, 22(22):4673-4680.
  • [21]PHYLIP Program for inferring phylogenies [http://evolution.genetics.washington.edu/phylip.html] webcite
  • [22]Yang Z: PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 1997, 13(5):555-556.
  • [23]Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J: TM4: a free, open-source system for microarray data management and analysis. Biotechniques 2003, 34(2):374-378.
  • [24]Olivares-Hernandez R, Bordel S, Nielsen J: Codon usage variability determines the correlation between proteome and transcriptome fold changes. BMC Syst Biol 2011, 5:33. BioMed Central Full Text
  • [25]Persson B, Argos P: Prediction of transmembrane segments in proteins utilising multiple sequence alignments. J Mol Biol 1994, 237(2):182-192.
  • [26]Llóret L, Martínez-Romero E: Evolucion y filogenia de Rhizobium. Rev Lat Microbiol 2005, 47:43-60.
  • [27]Capaldi RA, Vanderkooi G: The low polarity of many membrane proteins. Proc Natl Acad Sci USA 1972, 69(4):930-932.
  • [28]González V, Acosta JL, Santamaría RI, Bustos P, Fernández JL, Hernández-González IL, Díaz R, Flores M, Palacios R, Mora J, Dávila G: Conserved symbiotic plasmid DNA sequences in the multireplicon pangenomic structure of Rhizobium etli. Appl Environ Microbiol 2010, 76(5):1604-1614.
  • [29]Díaz R, Vargas-Lagunas C, Villalobos MA, Peralta H, Mora Y, Encarnación S, Girard L, Mora J: argC orthologs from Rhizobiales show diverse transcriptional efficiency and functionality in Sinorhizobium meliloti. J Bacteriol 2011, 193:460-472.
  • [30]Jordan IK, Rogozin IB, Wolf YI, Koonin EV: Microevolutionary genomics of bacteria. Theor Popul Biol 2002, 61(4):435-447.
  • [31]Jordan IK, Rogozin IB, Wolf YI, Koonin EV: Essential genes are more evolutionarily conserved than are nonessential genes in bacteria. Genome Res 2002, 12(6):962-968.
  • [32]Jordan IK, Wolf YI, Koonin EV: No simple dependence between protein evolution rate and the number of protein-protein interactions: only the most prolific interactors tend to evolve slowly. BMC Evol Biol 2003, 3:1. BioMed Central Full Text
  • [33]Koonin EV: Comparative genomics, minimal gene sets, and the last universal common ancestor. Nat Rev Microbiol 2003, 1:127-136.
  • [34]Danchin A: Genomes and evolution. Curr Issues Mol Biol 2003, 5:37-42.
  • [35]Young JP, Crossman LC, Johnston AW, Thomson NR, Ghazoui ZF, Hull KH, Wexler M, Curson AR, Todd JD, Poole PS, Mauchline TH, East AK, Quail MA, Churcher C, Arrowsmith C, Cherevach I, Chillingworth T, Clarke K, Cronin A, Davis P, Fraser A, Hance Z, Hauser H, Jagels K, Moule S, Mungall K, Norbertczak H, Rabbinowitsch E, Sanders M, Simmonds M, Whitehead S, Parkhill J: The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 2006, 7(4):R34. BioMed Central Full Text
  • [36]Koonin EV, Wolf YI: Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucl Acids Res 2008, 36:6688-6719.
  • [37]Philippe H, Casane D, Gribaldo S, Lopez P, Meunier J: Heterotachy and functional shift in protein evolution. IUBMB Life 2003, 55:257-265.
  • [38]Amitai G, Gupta RD, Tawfik DS: Latent evolutionary potentials under the neutral mutational drift of an enzyme. HFSP J 2007, 1:67-78.
  • [39]Wagner A: Neutralism and selectionism: a network-based reconciliation. Nat Rev Gen 2008, 9:965-974.
  • [40]Wagner A: Robustness, evolvability, and neutrality. FEBS Letters 2005, 579:1772-1778.
  • [41]Chamary JV, Parmley JL, Hurst LD: Hearing silence: non-neutral evolution at silent sites in mammals. Nat Rev Genet 2006, 7:98-108.
  • [42]Gray MW, Lukes J, Archibald JM, Keeling PJ, Doolittle WF: Irremediable complexity? Science 2010, 330:920-921.
  • [43]Ortlund EA, Bridgham JT, Redinbo MR, Thornton JW: Crystal structure of an ancient protein: evolution by conformational epistasis. Science 2007, 317:1544-1548.
  • [44]Lind PA, Berg OG, Andersson DI: Mutational robustness of ribosomal protein genes. Science 2010, 330:825-827.
  • [45]Kristensen DM, Wolf YI, Mushegian AR, Koonin EV: Computational methods for gene orthology inference. Brief Bioinf 2011.
  • [46]Lind PA, Tobin C, Berg OG, Kurland CG, Andersson DI: Compensatory gene amplification restores fitness after inter-species gene replacements. Mol Microbiol 2010, 75:1078-1089.
  • [47]Drummond DA, Wilke CO: Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell 2008, 134(2):341-352.
  • [48]Wolf MY, Wolf YI, Koonin EV: Comparable contributions of structural functional constraints and expression level to the rate of protein sequence evolution. Biol Direct 2008, 3:40. BioMed Central Full Text
  • [49]Wolf Y, Gopich IV, Lipman DJ, Koonin EV: Relative contributions of intrinsic structural-function constraints and translation rate to the evolution of protein-coding genes. Genome Biol Evol 2010, 2:190-199.
  • [50]Zeng Y, Gu X: Genome factor and gene pleiotropy hypotheses in protein evolution. Biol Direct 2010, 5:37. BioMed Central Full Text
  • [51]Mondal UK, Sur S, Bothra AK, Sen A: Comparative analysis of codon usage patterns and identification of predicted highly expressed genes in five Salmonella genomes. Indian J Med Microbiol 2008, 26:313-321.
  • [52]Das S, Ghosh S, Pan A, Dutta C: Compositional variation in bacterial genes and proteins with potential expression level. FEBS Lett 2005, 579:5205-5210.
  • [53]Carbone A, Zinovyev A, Képès F: Codon adaptation index as a measure of dominating codon bias. Bioinformatics 2003, 19:2005-2015.
  • [54]Rocha EP, Danchin A: An analysis of determinants of amino acids substitution rates in bacterial proteins. Mol Biol Evol 2004, 21(1):108-116.
  • [55]Krylov DM, Wolf YI, Rogozin IB, Koonin EV: Gene loss, protein sequence divergence, gene dispensability, expression level, and interactivity are correlated in eukaryotic evolution. Genome Res 2003, 13(10):2229-2235.
  • [56]Drummond AD, Bloom JD, Adami C, Wilke CO, Arnold FH: Why highly expressed proteins evolve slowly? Proc Natl Acad Sci USA 2005, 102(40):14338-14343.
  • [57]Marsella L, Sirocco F, Trovato A, Seno F, Tosatto SCE: REPETITA: detection and discrimination of the periodicity of protein solenoid repeats by discrete Fourier transform. Bioinformatics 2009, 25:i289-i295.
  • [58]Smole Z, Nikolic N, Supek F, Smuc T, Sbalzarini IF, Krisko A: Proteome sequence features carry signatures of the environmental niche of prokaryotes. BMC Evol Biol 2011, 11:26. BioMed Central Full Text
  • [59]Kiraga J, Mackiewicz P, Mackiewicz D, Kowalczuk M, Biecek P, Polak N, Smolarczyk K, Dudek MR, Cebrat S: The relationships between the isoelectric point and: length of proteins, taxonomy and ecology of organisms. BMC Genomics 2007, 8:163. BioMed Central Full Text
  • [60]Williams DL, Slayden RA, Amin A, Martinez AN, Pittman TL, Mira A, Mitra A, Nagaraja V, Morrison NE, Moraes M, Gillis TP: Implications of high level pseudogene transcription in Mycobacterium leprae. BMC Genomics 2009, 10:397. BioMed Central Full Text
  • [61]Gómez-Valero L, Rocha EPC, Latorre A, Silva FJ: Reconstructing the ancestor of Mycobacterium leprae: The dynamics of gene loss and genome reduction. Genome Res 2007, 17(8):1178-1185.
  • [62]Ran L, Larsson J, Vigil-Stenman T, Nylander JAA, Ininbergs K, Zheng WW, Lapidus A, Lowry S, Haselkorn R, Bergman B: Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium. PLoS One 2010, 5(7):e11486.
  • [63]Willenbrock H, Friis C, Friis AS, Ussery DW: An environmental signature for 323 microbial genomes based on codon adaptation indices. Genome Biol 2006, 7(12):R114. BioMed Central Full Text
  文献评价指标  
  下载次数:98次 浏览次数:18次