期刊论文详细信息
Biotechnology for Biofuels
Rapid selection and identification of Miscanthus genotypes with enhanced glucan and xylan yields from hydrothermal pretreatment followed by enzymatic hydrolysis
Taiying Zhang2  Charles E Wyman4  Katrin Jakob1  Bin Yang3 
[1] Mendel Biotechnology Inc., 3935 Point Eden Way, Hayward, CA, 94545, USA
[2] Center for Environmental Research and Technology, Bourns College of Engineering, University of California, 1084 Columbia Avenue, Riverside, CA, 92507, USA
[3] Center for Bioproducts and Bioenergy, Washington State University, 2710 University Drive, Richland, WA, 99354, USA
[4] Chemical and Environmental Engineering Department, Bourns College of Engineering, University of California, Riverside, CA, 92521, USA
关键词: Co-hydrolysis;    Hydrothermal pretreatment;    High throughput;    Miscanthus;   
Others  :  798248
DOI  :  10.1186/1754-6834-5-56
 received in 2012-03-27, accepted in 2012-06-20,  发布年份 2012
PDF
【 摘 要 】

Background

Because many Miscanthus genotypes can be cultivated with relatively high productivity and carbohydrate content, Miscanthus has great potential as an energy crop that can support large scale biological production of biofuels.

Results

In this study, batch hydrothermal pretreatment at 180°C for 35 min followed by enzymatic hydrolysis was shown to give the highest total sugar yields for Miscanthus x giganteus cv. Illinois planted in Illinois. High throughput pretreatment at 180°C for 35 min and 17.5 min followed by co-hydrolysis in a multi-well batch reactor identified two varieties out of 80 that had significantly higher sugar yields from pretreatment and enzymatic hydrolysis than others. The differences in performance were then related to compositions of the 80 varieties to provide insights into desirable traits for Miscanthus that enhance sugar yields.

Conclusions

High throughput pretreatment and co-hydrolysis (HTPH) rapidly identified promising genotypes from a wide range of Miscanthus genotypes, including hybrids of Miscanthus sacchariflorus/M. sinensis and Miscanthus lutarioriparius, differentiating the more commercially promising species from the rest. The total glucan plus xylan content in Miscanthus appeared to influence both mass and theoretical yields, while lignin and ash contents did not have a predictable influence on performance.

【 授权许可】

   
2012 Zhang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706112612132.pdf 888KB PDF download
Figure 5. 69KB Image download
Figure 4. 75KB Image download
Figure 3. 78KB Image download
Figure 2. 39KB Image download
Figure 1. 63KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Kerr RA: Bumpy road ahead for world's oil. Science 2005, 310:1106-1108.
  • [2]Kerr RA, Service RF: What can replace cheap oil - and when. Science 2005, 309:101-101.
  • [3]Kerr RA: Peak oil production may already be here. Science 2011, 331:1510-1511.
  • [4]U.S. Department of Energy: In U.S. billion-ton update: biomass supply for a bioenergy and bioproducts industry Edited by Perlack RD, Stokes BJ. Oak Ridge National Laboratory, Oak Ridge, TN; 2011. ORNL/TM-2011/224, 227p.
  • [5]Clifton-Brown J, Lewandowski I, Andersson B, Basch G, Christian D, Kjeldsen J, Jorgensen U, Mortensen J, Riche A, Schwarz K, et al.: Performance of 15 Miscanthus genotypes at five sites in Europe. Agron J 2001, 93:1013-1019.
  • [6]Kordsachia O, Seemann A, Patt R: Fast-growing Poplar and Miscanthus-Sinensis - future raw-materials for pulping in central-Europe. Biomass Bioenergy 1993, 5:137-143.
  • [7]Lewandowski I, Clifton-Brown J, Scurlock J, Huisman W: Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 2000, 19:209-227.
  • [8]Pude R: New cultivation methods of Miscanthus in Europe. Berichte Uber Landwirtschaft 2003, 81:405-415.
  • [9]Hastings A, Clifton-Brown J, Wattenbach M, Stampfl P, Mitchell CP, Smith P: Potential of Miscanthus grasses to provide energy and hence reduce greenhouse gas emissions. Agron Sustain Dev 2008, 28:465-472.
  • [10]Fike JH, Parrish DJ, Wolf DD, Balasko JA, Green JT, Rasnake M, Reynolds JH: Switchgrass production for the upper southeastern USA: Influence of cultivar and cutting frequency on biomass yields. Biomass Bioenergy 2006, 30:207-213.
  • [11]Heaton EA, Dohleman FG, Long SP: Meeting US biofuel goals with less land: the potential of Miscanthus. Glob Chang Biol 2008, 14:2000-2014.
  • [12]Heaton EA, Dohleman FG, Miguez AF, Juvik JA, Lozovaya V, Widholm J, Zabotina OA, Mcisaac GF, David MB, Voigt TB, et al.: Miscanthus: A Promising Biomass Crop. Adv Bot Res 2010, 56:75-137.
  • [13]Maughan M, Bollero G, Lee DK, Darmody R, Bonos S, Cortese L, Murphy J, Gaussoin R, Sousek M, Williams D, et al.: Miscanthus × giganteus productivity: the effects of management in different environments. GCB Bioenergy 2012, 4:253-265.
  • [14]de Vrije T, de Haas G, Tan G, Keijsers E, Claassen P: Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii. Int J Hydrog Energy 2002, 27:1381-1390.
  • [15]Yoshida M, Liu Y, Uchida S, Kawarada K, Ukagami Y, Ichinose H, Kaneko S, Fukuda K: Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Biosci Biotechnol Biochem 2008, 72:805-810.
  • [16]Murnen H, Balan V, Chundawat S, Bals B, Sousa L, Dale B: Optimization of ammonia fiber expansion (AFEX) pretreatment and enzymatic hydrolysis of Miscanthus x giganteus to fermentable sugars. Biotechnol Prog 2007, 23:846-850.
  • [17]Brosse N, Sannigrahi P, Ragauskas A: Pretreatment of Miscanthus x giganteus using the ethanol organosolv process for ethanol production. Ind Eng Chem Res 2009, 48:8328-8334.
  • [18]Sorensen A, Teller P, Hilstrom T, Ahring B: Hydrolysis of Miscanthus for bioethanol production using dilute acid presoaking combined with wet explosion pre-treatment and enzymatic treatment. Bioresour Technol 2008, 99:6602-6607.
  • [19]Wang B, Wang X, Feng H: Deconstructing recalcitrant Miscanthus with alkaline peroxide and electrolyzed water. Bioresour Technol 2010, 101:752-760.
  • [20]Han K, Ko J, Yang S: Optimizing lignocellulosic feedstock for improved biofuel productivity and processing. Biofuels Bioprod Biorefining-Biofpr 2007, 1:135-146.
  • [21]Aden A, Foust T: Technoeconomic analysis of the dilute sulfuric acid and enzymatic hydrolysis process for the conversion of corn stover to ethanol. Cellulose 2009, 16:535-545.
  • [22]Jackson L, Shadle G, Zhou R, Nakashima J, Chen F, Dixon R: Improving saccharification efficiency of Alfalfa stems through modification of the terminal stages of monolignol biosynthesis. Bioenergy Res 2008, 1:180-192.
  • [23]Shen H, Fu C, Xiao X, Ray T, Tang Y, Wang Z, Chen F: Developmental Control of Lignification in Stems of Lowland Switchgrass Variety Alamo and the Effects on Saccharification Efficiency. Bioenergy Res 2009, 2:233-245.
  • [24]Elander RT, Dale BE, Holtzapple M, Ladisch MR, Lee YY, Mitchinson C, Saddler JN, Wyman CE: Summary of findings from the Biomass Refining Consortium for Applied Fundamentals and Innovation (CAFI): corn stover pretreatment. Cellulose 2009, 16:649-659.
  • [25]Perez J, Ballesteros I, Ballesteros M, Saez F, Negro M, Manzanares P: Optimizing Liquid Hot Water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production. Fuel 2008, 87:3640-3647.
  • [26]Suryawati L, Wilkins M, Bellmer D, Huhnke R, Maness N, Banat I: Effect of hydrothermolysis process conditions on pretreated switchgrass composition and ethanol yield by SSF with Kluyveromyces marxianus IMB4. Process Biochem 2009, 44:540-545.
  • [27]Kim Y, Mosier N, Ladisch M: Enzymatic digestion of liquid hot water pretreated hybrid poplar. Biotechnol Prog 2009, 25:340-348.
  • [28]Studer MH, DeMartini JD, Davis MF, Sykes RW, Davison B, Keller M, Tuskan GA, Wyman CE: Lignin content in natural Populus variants affects sugar release. Proc Natl Acad Sci U S A 2011, 108:6300-6305.
  • [29]Studer MH, DeMartini JD, Brethauer S, McKenzie HL, Wyman CE: Engineering of a High-Throughput screening system to identify cellulosic biomass, pretreatments, and enzyme formulations that enhance sugar release. Biotechnol Bioeng 2010, 105:231-238.
  • [30]DeMartini JD, Studer MH, Wyman CE: Small-scale and automatable High-Throughput Compositional analysis of biomass. Biotechnol Bioeng 2011, 108:306-312.
  • [31]DeMartini JD, Wyman CE: Changes in composition and sugar release across the annual rings of Populus wood and implications on recalcitrance. Bioresour Technol 2011, 102:1352-1358.
  • [32]Vandenbrink JP, Delgado MP, Frederick JR, Feltus FA: A sorghum diversity panel biofuel feedstock screen for genotypes with high hydrolysis yield potential. Ind Crops Prod 2010, 31:444-448.
  • [33]Chundawat S, Balan V, Dale B: High-throughput microplate technique for enzymatic hydrolysis of lignocellulosic Biomass. Biotechnol Bioeng 2008, 99:1281-1294.
  • [34]Bharadwaj R, Wong A, Knierim B, Singh S, Holmes BM, Auer M, Simmons BA, Adams PD, Singh AK: High-throughput enzymatic hydrolysis of lignocellulosic biomass via in-situ regeneration. Bioresource technol 2011, 102:1329-1337.
  • [35]Gao DH, Chundawat SPS, Krishnan C, Balan V, Dale BE: Mixture optimization of six core glycosyl hydrolases for maximizing saccharification of ammonia fiber expansion (AFEX) pretreated corn stover. Bioresour Technol 2010, 101:2770-2781.
  • [36]Gao DH, Chundawat SPS, Uppugundla N, Balan V, Dale BE: Binding Characteristics of Trichoderma reesei Cellulases on Untreated, Ammonia Fiber Expansion (AFEX), and Dilute-Acid Pretreated Lignocellulosic Biomass. Biotechnol Bioeng 2011, 108:1788-1800.
  • [37]Selig MJ, Tucker MP, Law C, Doeppke C, Himmel ME, Decker SR: High throughput determination of glucan and xylan fractions in lignocelluloses. Biotechnol Lett 2011, 33:961-967.
  • [38]DOE Theoretical ethanol yield calculator. http://www1.eere.energy.gov/biomass/ethanol_yield_calculator.html webcite
  • [39]Overend RP, Chornet E: Fractionation of lignocellulosics by steam-aqueous pretreatments. Phil Trans R Soc Lond 1987, A321:523-536.
  • [40]Lloyd T, Wyman C: Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour Technol 2005, 96:1967-1977.
  • [41]Qing Q, Yang B, Wyman CE: Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour Technol 2010, 101:9624-9630.
  • [42]Kumar R, Wyman CE: Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresour Technol 2009, 100:4203-4213.
  • [43]Humbird RD D, Tao L, Kinchin C, Hsu D, Aden A, Schoen JL P, Olthof B, Worley M, Sexton D, Dudgeon D: Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover. National Renewable Energy Laboratory, Golden, CO; 2011. NREL/TP-5100-47764
  • [44]Hodkinson TR, Chase MW, Takahashi C, Leitch IJ, Bennett MD, Renvoize SA: The use of DNA sequencing (ITS and trnL-F), AFLP, and fluorescent in situ hybridization to study allopolyploid Miscanthus (Poaceae). Am J Bot 2002, 89:279-286.
  • [45]Sluiter A, Ruiz BH, Scarlata CR, Sluiter J, Templeton D: Determination of ash in biomass laboratory analytical procedure. National Renewable Energy Laboratory Analytical Procedure, Golden, CO; 2005.
  • [46]Sluiter A, Ruiz BH, Scarlata CR, Sluiter J, Templeton D: Determination of extractives in biomass laboratory analytical procedure. National Renewable Energy Laboratory Analytical Procedure, Golden, CO; 2005.
  • [47]Sluiter A, Ruiz BH, Scarlata CR, Sluiter J, Templeton D, Crocker AD: Determination of structural carbohydrates and lignin in biomass laboratory analytical procedure. National Renewable Energy Laboratory Analytical Procedure, Golden, CO; 2008.
  • [48]Sluiter A, Ruiz BH, Scarlata CR, Sluiter J, Templeton D: Determination of sugars, byproducts, and degradation products in liquid fraction process samples laboratory analytical procedure. National Renewable Energy Laboratory Analytical Procedure, Golden, CO; 2006.
  • [49]Selig M, Weiss N, Ji Y: Enzymatic saccharification of lignocellulosic biomass laboratory analytical procedure. National Renewable Energy Laboratory Analytical Procedure, Golden, CO; 2006.
  文献评价指标  
  下载次数:54次 浏览次数:34次