期刊论文详细信息
Sustainable Chemical Processes
Continuous flow transformations of glycerol to valuable products: an overview
Christophe Len2  Rafael Luque1 
[1] Department of Chemical and Biomolecular Engineering (CBME), Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong
[2] Université de Technologie de Compiègne, EA4297, Centre de recherche de Royallieu, BP20529, F-60205 Compiègne, Cedex, France
关键词: Green chemistry;    Continuous flow;    Glycerol;   
Others  :  789169
DOI  :  10.1186/2043-7129-2-1
 received in 2013-11-09, accepted in 2014-01-03,  发布年份 2014
PDF
【 摘 要 】

Glycerol conversion to valuable products has been a research avenue that attracted a significant interest in recent years due to its large available volumes (as by-product of biodiesel production) and the different possibilities for chemical and biological conversion into high added value chemicals profiting from the unique presence of three hydroxyl groups in its structure. The utilization of continuous flow processes in combination with transformation of platform chemicals (e.g. glycerol) can offer several advantages to batch processes in view of their potential implementation in industry. This minireview has been aimed to highlight most recent key continuous flow systems for glycerol valorization to valuable products using different types of catalysts and processes.

【 授权许可】

   
2014 Len and Luque; licensee Chemistry Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140704154326906.pdf 1148KB PDF download
Scheme 12 7KB Image download
Scheme 11 6KB Image download
Scheme 10 9KB Image download
Scheme 9 18KB Image download
Scheme 8 5KB Image download
Scheme 7 14KB Image download
Scheme 6 8KB Image download
Scheme 5 5KB Image download
Scheme 4 6KB Image download
Scheme 3 12KB Image download
Scheme 2 6KB Image download
Scheme 1 24KB Image download
【 图 表 】

Scheme 1

Scheme 2

Scheme 3

Scheme 4

Scheme 5

Scheme 6

Scheme 7

Scheme 8

Scheme 9

Scheme 10

Scheme 11

Scheme 12

【 参考文献 】
  • [1]Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T: The path forward for biofuels and biomaterials. Science 2006, 311:484-489.
  • [2]Clark JH, Luque R, Matharu AS: Green chemistry, biofuels and biorefinery. Ann Rev Chem Biomol Eng 2012, 3:183-207.
  • [3]Serrano-Ruiz JC, Luque R, Sepulveda-Escribano A: Transformation of biomass-derived platform molecules: from high-added value chemicals to fuels via aqueous-phase processing. Chem Soc Rev 2011, 40:5266-5281.
  • [4]Gude VG, Patil P, Martinez-Guerra E, Deng S, Nirmalakhandan N: Microwave energy potential for biodiesel production. Sustainable Chem Process 2013, 1:5 4.
  • [5]Zhou C-H, Beltramini JN, Fan Y-X, Lu GQ: Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem Soc Rev 2008, 37:527-549.
  • [6]Gu Y, Jerome F: Glycerol as sustainable solvent for green chemistry. Green Chem 2010, 7:1127-1138.
  • [7]Beltran-Prieto JC, Kolomaznik K, Pecha J: A review of catalytic systems for glycerol oxidation: alternatives for waste valorization. Aust J Chem 2013, 66:511-521.
  • [8]Katryniok B, Paul S, Bellière-Baca V, Rey P, Dumeignil F: Glycerol dehydration to acrolein in the context of new uses of glycerol. Green Chem 2010, 12:2079-2098.
  • [9]Katryniok B, Kimura H, Skrzynska E, Girardon JS, Fongarland P, Capron M, Ducoulombier R, Mimura N, Paul S, Dumeignil F: Selective catalytic oxidation of glycerol: perspectives for high value chemicals. Green Chem 2011, 13:1960-1979.
  • [10]Katryniok B, Paul S, Dumeignil F: Recent developments in the field of catalytic dehydration of glycerol to acrolein. ACS Catal 2013, 3:1819-1834.
  • [11]Glasnov TN, Kappe CO: The microwave-to-flow paradigm: translating high temperature bacth microwave chemistry to scalable continuous flow processes. Chem Eur J 2011, 17:11956-11968.
  • [12]Buhler W, Dinjus E, Ederer HJ, Kruse A, Mas C: Ionic reactions and pyrolysis of glycerol as competing reaction pathways in near- and supercritical water. J Supercrit Fluids 2002, 22:37-53.
  • [13]Ott L, Bicker M, Vogel H: Catalytic dehydration of glycerol in sub- and supercritical water: a new chemical process for acrolein production. Green Chem 2006, 8:214-220.
  • [14]Lehr V, Sarlea M, Ott L, Vogel H: Catalytic dehydration of biomass-derived polyols in sub- and supercritical water. Catal Today 2007, 121:121-129.
  • [15]Watanabe M, Iida T, Aizawa Y, Aida TM, Inomata H: Acrolein synthesis from glycerol in hot-compressed water. Bioresour Technol 2007, 98:1285-1290.
  • [16]Yuksel A, Koga H, Sasaki M, Goto M: Hydrothermal electrolysis of glycerol using a continuous flow reactor. Ind Eng Chem Res 2010, 49:1520-1525.
  • [17]Brandner A, Lehnert K, BIenholz A, Lucas M, Claus P: Production of biomass-derived chemicals and energy: chemocatalytic conversion of glycerol. Top Catal 2009, 52:278-287.
  • [18]Zope BN, Davis SE, Davis RJ: Influence of reaction conditions on diacid formation during Au-catalyzed oxidation of glycerol and hydroxymethylfurfural. Top Catal 2012, 55:24-32.
  • [19]Kunkes EL, Soares RR, Simoneti DA, Dumesic JA: An integrated catalytic approach for the production of hydrogen by glycerol reforming coupled with water-gas shift. Appl Catal B 2009, 90:693-698.
  • [20]Hu J, Liu X, Wang B, Pei Y, Qiao M, Fan K: Reforming and hydrogenolysis of glycerol over Ni/ZnO catalysts prepared by different methods. Chin J Catal 2012, 33:1266-1275.
  • [21]Hu J, Liu X, Fan Y, Xie S, Pei Y, Qiao M, Fan K, Zhang X, Zong B: Physically mixed ZnO and skeletal NiMo for one-pot reforming-hydrogenolysis of glycerol to 1,2-propanediol. Chin J Catal 2013, 34:1020-1026.
  • [22]Gonzalez-Pajuelo M, Meynial-Salles I, Mendes F, Andrade JC, Vasconcelos I, Soucaille P: Metabolic enginering of Clotridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol. Metabolic Eng 2005, 7:329-336.
  • [23]Qin LZ, Song MJ, Chen CL: Aquous-phase deoxygenation of glycerol to 1,3-propanediol over Pt/WO3/ZrO2 catalysts in a fixed-bed reactor. Green Chem 2010, 12:1466-1472.
  • [24]Alvarez MG, Pliskova M, Segarra AM, Medina F, Figueras F: Synthesis of glycerol carbonates by transesterification of glycerol in a continuous system using supported hydrotalcites as catalyst. Appl Catal B 2012, 113–114:212-220.
  • [25]Rezayat M, Ghaziaskar HS: Continuous synthesis of glycerol acetates in supercritical carbon dioxide using Amberlyst 15. Green Chem 2009, 11:710-715.
  • [26]Fukumura T, Toda T, Seki Y, Kubo M, Shibasaki-Kitakawa N, Yonemoto T: Catalytic synthesis of glycerol monoacetate using a continuous expanded bed column reactor packed with cation-exchange resin. Ind Eng Chem Res 2009, 48:1816-1823.
  • [27]Costa ICR, Itabaiana I, Flores MC, Lourenco AC, Leite SGF, Miranda LS d M e, Leal ICR, de Souza ROMA: Biocatalyzed acetins production under continuous-flow conditions: valorization of glycerol derived from biodiesel industry. J Flow Chem 2013, 3:41-45.
  文献评价指标  
  下载次数:60次 浏览次数:7次