期刊论文详细信息
Biotechnology for Biofuels
Carbon dioxide fixation by Calvin-Cycle enzymes improves ethanol yield in yeast
Víctor Guadalupe-Medina1  H Wouter Wisselink1  Marijke AH Luttik1  Erik de Hulster1  Jean-Marc Daran1  Jack T Pronk1  Antonius JA van Maris1 
[1] Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600, GA Delft, The Netherlands
关键词: Bioethanol;    Glycerol;    Saccharomyces cerevisiae;    Carbon dioxide fixation;    NADH re-oxidation;    Phosphoribulokinase;    Ribulose-1,5-bisphosphate carboxylase;    Rubisco;    Synthetic biology;    Metabolic engineering;   
Others  :  797922
DOI  :  10.1186/1754-6834-6-125
 received in 2013-06-20, accepted in 2013-08-27,  发布年份 2013
PDF
【 摘 要 】

Background

Redox-cofactor balancing constrains product yields in anaerobic fermentation processes. This challenge is exemplified by the formation of glycerol as major by-product in yeast-based bioethanol production, which is a direct consequence of the need to reoxidize excess NADH and causes a loss of conversion efficiency. Enabling the use of CO2 as electron acceptor for NADH oxidation in heterotrophic microorganisms would increase product yields in industrial biotechnology.

Results

A hitherto unexplored strategy to address this redox challenge is the functional expression in yeast of enzymes from autotrophs, thereby enabling the use of CO2 as electron acceptor for NADH reoxidation. Functional expression of the Calvin cycle enzymes phosphoribulokinase (PRK) and ribulose-1,5-bisphosphate carboxylase (Rubisco) in Saccharomyces cerevisiae led to a 90% reduction of the by-product glycerol and a 10% increase in ethanol production in sugar-limited chemostat cultures on a mixture of glucose and galactose. Co-expression of the Escherichia coli chaperones GroEL and GroES was key to successful expression of CbbM, a form-II Rubisco from the chemolithoautotrophic bacterium Thiobacillus denitrificans in yeast.

Conclusions

Our results demonstrate functional expression of Rubisco in a heterotrophic eukaryote and demonstrate how incorporation of CO2 as a co-substrate in metabolic engineering of heterotrophic industrial microorganisms can be used to improve product yields. Rapid advances in molecular biology should allow for rapid insertion of this 4-gene expression cassette in industrial yeast strains to improve production, not only of 1st and 2nd generation ethanol production, but also of other renewable fuels or chemicals.

【 授权许可】

   
2013 Guadalupe-Medina et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706090030236.pdf 1201KB PDF download
Figure 4. 86KB Image download
Figure 3. 121KB Image download
Figure 2. 58KB Image download
Figure 1. 127KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]World Fuel Ethanol Production. http://ethanolrfa.org/pages/World-Fuel-Ethanol-Production webcite
  • [2]Hong KK, Nielsen J: Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci 2012, 69:2671-2690.
  • [3]Nielsen J, Larsson C, van Maris A, Pronk J: Metabolic engineering of yeast for production of fuels and chemicals. Curr Opin Biotechnol 2013, 24:398-404.
  • [4]van Dijken JP, Scheffers WA: Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Rev 1986, 32:199-224.
  • [5]Nissen TL, Kielland-Brandt MC, Nielsen J, Villadsen J: Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metab Eng 2000, 2:69-77.
  • [6]Guadalupe Medina V, Almering MJH, van Maris AJA, Pronk JT: Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor. Appl Environ Microbiol 2010, 76:190-195.
  • [7]Verduyn C, Postma E, Scheffers WA, van Dijken JP: Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J Gen Microbiol 1990, 136:395-403.
  • [8]Milanez S, Mural RJ: Cloning and sequencing of cDNA encoding the mature form of phosphoribulokinase from spinach. Gene 1988, 66:55-63.
  • [9]Brandes HK, Hartman FC, Lu TY, Larimer FW: Efficient expression of the gene for spinach phosphoribulokinase in Pichia pastoris and utilization of the recombinant enzyme to explore the role of regulatory cysteinyl residues by site-directed mutagenesis. J Biol Chem 1996, 271:6490-6496.
  • [10]Shively JM, van Keulen G, Meijer WG: Something from almost nothing: Carbon Dioxide Fixation in Chemoautotrophs. Annu Rev Microbiol 1998, 52:191-230.
  • [11]Tabita FR, Satagopan S, Hanson TE, Kreel NE, Scott SS: Distinct form I, II, III, and IV Rubisco proteins from the three kingdoms of life provide clues about Rubisco evolution and structure/function relationships. J Exp Bot 2008, 59:1515-1524.
  • [12]Quivey J, Robert Tabita F: Cloning and expression in Escherichia coli of the form II ribulose 1,5-bisphosphate carboxylase/oxygenase gene from Rhodopseudomonas sphaeroides. Gene 1984, 31:91-101.
  • [13]Somerville C, Somerville S: Cloning and expression of the Rhodospirillum rubrum ribulose bisphosphate carboxylase gene in Escherichia coli. Mol Gen Genet 1984, 193:214-219.
  • [14]Goloubinoff P, Gatenby AA, Lorimer GH: GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature 1989, 337:44-47.
  • [15]Hayashi NR, Arai H, Kodama T, Igarashi Y: The cbbQ genes, located downstream of the form I and form II RubisCO genes, affect the activity of both RubisCOs. Biochem Biophys Res Commun 1999, 265:177-183.
  • [16]Chen DH, Madan D, Weaver J, Lin Z, Schröder GF, Chiu W, Rye HS: Visualizing GroEL/ES in the act of encapsulating a folding protein. Cell 2013, 153:1354-1365.
  • [17]Hernández JM, Baker SH, Lorbach SC, Shively JM, Tabita FR: Deduced amino acid sequence, functional expression, and unique enzymatic properties of the form I and form II ribulose bisphosphate carboxylase/oxygenase from the chemoautotrophic bacterium Thiobacillus denitrificans. J Bacteriol 1996, 178:347-356.
  • [18]Durfee T, Nelson R, Baldwin S, Plunkett G, Burland V, Mau B, Petrosino JF, Qin X, Muzny DM, Ayele M, et al.: The complete genome sequence of Escherichia coli DH10B: Insights into the biology of a laboratory workhorse. J Bacteriol 2008, 190:2597-2606.
  • [19]Hayashi NR, Arai H, Kodama T, Igarashi Y: The Novel Genes, cbbQ and cbbO, located downstream from the RubisCO genes of Pseudomonas hydrogenothermophila, affect the conformational states and activity of RubisCO. Biochem Biophys Res Commun 1997, 241:565-569.
  • [20]Beller HR, Chain PSG, Letain TE, Chakicherla A, Larimer FW, Richardson PM, Coleman MA, Wood AP, Kelly DP: The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans. J Bacteriol 2006, 188:1473-1488.
  • [21]Martínez-Alonso M, Toledo-Rubio V, Noad R, Unzueta U, Ferrer-Miralles N, Roy P, Villaverde A: Rehosting of bacterial chaperones for high-quality protein production. Appl Environ Microbiol 2009, 75:7850-7854.
  • [22]Jariyachawalid K, Laowanapiban P, Meevootisom V, Wiyakrutta S: Effective enhancement of Pseudomonas stutzeri D-phenylglycine aminotransferase functional expression in Pichia pastoris by co-expressing Escherichia coli GroEL-GroES. Microb Cell Fact 2012, 11:47. BioMed Central Full Text
  • [23]Harder W, Kuenen JG, Matin A: Microbial selection in continuous culture. J Appl Microbiol 1977, 43:1-24.
  • [24]Daran-Lapujade P, Jansen MLA, Daran JM, van Gulik W, de Winde JH, Pronk JT: Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae: a chemostat culture study. J Biol Chem 2004, 279:9125-9138.
  • [25]Bai FW, Anderson WA, Moo-Young M: Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv 2008, 26:89-105.
  • [26]Garcia Sanchez R, Hahn-Hägerdal B, Gorwa-Grauslund M: PGM2 overexpression improves anaerobic galactose fermentation in Saccharomyces cerevisiae. Microb Cell Fact 2010, 9:40. BioMed Central Full Text
  • [27]Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund M: Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 2007, 74:937-953.
  • [28]Mumberg D, Müler R, Funk M: Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 1995, 156:119-122.
  • [29]Güldener U, Heck S, Fiedler T, Beinhauer J, Hegemann JH: A new efficient gene disruption cassette for repeated use in budding yeast. Nuc Acids Res 1996, 24:2519-2524.
  • [30]Grote A, Hiller K, Scheer M, Münch R, Nörtemann B, Hempel DC, Jahn D: JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nuc Acids Res 2005, 33:W526-W531.
  • [31]Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, et al.: Functional characterization of the Saccharomyces cerevisiae genome by gene deletion and parallel analysis. Science 1999, 285:901-906.
  • [32]Entian KD, Kötter P: Yeast genetic strain and plasmid collections. In Methods in Microbiology: Yeast Gene Analysis Second Edition. 36th edition. Edited by Stansfield I, Stark MJR. Amsterdam: Academic Press; 2007:629-666.
  • [33]Nijkamp J, van den Broek M, Datema E, de Kok S, Bosman L, Luttik M, Daran-Lapujade P, Vongsangnak W, Nielsen J, Heijne W, et al.: De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology. Microb Cell Fact 2012, 11:36. BioMed Central Full Text
  • [34]Pronk JT: Auxotrophic yeast strains in fundamental and applied research. Appl Environ Microbiol 2002, 68:2095-2100.
  • [35]Kuijpers N, Solis-Escalante D, Bosman L, van den Broek M, Pronk J, Daran JM, Daran-Lapujade P: A versatile, efficient strategy for assembly of multi-fragment expression vectors in Saccharomyces cerevisiae using 60 bp synthetic recombination sequences. Microb Cell Fact 2013, 12:47. BioMed Central Full Text
  • [36]Gietz RD, Woods R: Yeast transformation by the LiAc/SS carrier DNA/PEG method. In Yeast Protocol. 313th edition. Edited by Xiao W. (Totowa, NJ, USA): Humana Press; 2006:107-120.
  • [37]Zerbino D, Birney E: Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008, 18:821-829.
  • [38]Güldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH: A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nuc Acids Res 2002, 30:e23.
  • [39]Basso TO, de Kok S, Dario M, do Espirito-Santo JC, Müller G, Schlölg PS, Silva CP, Tonso A, Daran JM, Gombert AK, et al.: Engineering topology and kinetics of sucrose metabolism in Saccharomyces cerevisiae for improved ethanol yield. Metab Eng 2011, 13:694-703.
  • [40]Mashego MR, van Gulik WM, Vinke JL, Heijnen JJ: Critical evaluation of sampling techniques for residual glucose determination in carbon-limited chemostat culture of Saccharomyces cerevisiae. Biotechnol Bioeng 2003, 83:395-399.
  • [41]Luttik MAH, Kötter P, Salomons FA, van der Klei IJ, van Dijken JP, Pronk JT: The Saccharomyces cerevisiae ICL2 gene encodes a mitochondrial 2-methylisocitrate lyase involved in propionyl-coenzyme A metabolism. J Bacteriol 2000, 182:7007-7013.
  • [42]MacElroy RD, Mack HM, Johnson EJ: Properties of phosphoribulokinase from Thiobacillus neapolitanus. J Bacteriol 1972, 112:532-538.
  • [43]Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem 1951, 193:265-275.
  • [44]Beudeker RF, Cannon GC, Keunen JG, Shively JM: Relations between d-ribulose-1,5-bisphosphate carboxylase, carboxysomes and CO2 fixing capacity in the obligate chemolithotroph Thiobacillus neapolitanus grown under different limitations in the chemostat. Arch Microbiol 1980, 124:185-189.
  文献评价指标  
  下载次数:15次 浏览次数:7次