期刊论文详细信息
Biotechnology for Biofuels
Quantitative analysis of an engineered CO 2-fixing Escherichia coli reveals great potential of heterotrophic CO 2 fixation
Fuyu Gong1  Guoxia Liu2  Xiaoyun Zhai1  Jie Zhou2  Zhen Cai2  Yin Li2 
[1] University of the Chinese Academy of Sciences, Beijing, China
[2] CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road Chaoyang District, Beijing 100101, China
关键词: Rubisco;    Carbonic anhydrase;    Heterotrophic microbe;    CO2-fixation rate;    Carbon fixation;   
Others  :  1219216
DOI  :  10.1186/s13068-015-0268-1
 received in 2015-02-23, accepted in 2015-06-05,  发布年份 2015
PDF
【 摘 要 】

Background

Production of fuels from the abundant and wasteful CO 2is a promising approach to reduce carbon emission and consumption of fossil fuels. Autotrophic microbes naturally assimilate CO 2using energy from light, hydrogen, and/or sulfur. However, their slow growth rates call for investigation of the possibility of heterotrophic CO 2fixation. Although preliminary research has suggested that CO 2fixation in heterotrophic microbes is feasible after incorporation of a CO 2 -fixing bypass into the central carbon metabolic pathway, it remains unclear how much and how efficient that CO 2can be fixed by a heterotrophic microbe.

Results

A simple metabolic flux index was developed to indicate the relative strength of the CO 2 -fixation flux. When two sequential enzymes of the cyanobacterial Calvin cycle were incorporated into an E. coli strain, the flux of the CO 2 -fixing bypass pathway accounts for 13 % of that of the central carbon metabolic pathway. The value was increased to 17 % when the carbonic anhydrase involved in the cyanobacterial carbon concentrating mechanism was introduced, indicating that low intracellular CO 2concentration is one limiting factor for CO 2fixation in E. coli. The engineered CO 2 -fixing E. coli with carbonic anhydrase was able to fix CO 2at a rate of 19.6 mg CO 2L −1  h −1or the specific rate of 22.5 mg CO 2g DCW −1  h −1 . This CO 2 -fixation rate is comparable with the reported rates of 14 autotrophic cyanobacteria and algae (10.5–147.0 mg CO 2L −1  h −1or the specific rates of 3.5–23.7 mg CO 2g DCW −1  h −1 ).

Conclusions

The ability of CO 2fixation was created and improved in E. coli by incorporating partial cyanobacterial Calvin cycle and carbon concentrating mechanism, respectively. Quantitative analysis revealed that the CO 2 -fixation rate of this strain is comparable with that of the autotrophic cyanobacteria and algae, demonstrating great potential of heterotrophic CO 2fixation.

【 授权许可】

   
2015 Gong et al.

【 预 览 】
附件列表
Files Size Format View
20150715104245796.pdf 1005KB PDF download
Fig. 3. 19KB Image download
Fig. 2. 60KB Image download
Fig. 1. 52KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

【 参考文献 】
  • [1]Mikkelsen MJM, Krebs FC: The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ Sci 2010, 3:43-81.
  • [2]Dexter J, Fu PC: Metabolic engineering of cyanobacteria for ethanol production. Energy Environ Sci 2009, 2:857-64.
  • [3]Deng MD, Coleman JR: Ethanol synthesis by genetic engineering in cyanobacteria. Appl Environ Microbiol 1999, 65:523-8.
  • [4]Luo DX, Hu ZS, Choi DG, Thomas VM, Realff MJ, Chance RR: Life cycle energy and greenhouse gas emissions for an ethanol production process based on blue-green algae. Environ Sci Technol 2010, 44:8670-7.
  • [5]Lan EI, Liao JC: ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc Natl Acad Sci USA 2012, 109:6018-23.
  • [6]Lan EI, Liao JC: Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab Eng 2011, 13:353-63.
  • [7]Atsumi S, Higashide W, Liao JC: Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 2009, 27:1177-80.
  • [8]Li H, Opgenorth PH, Wernick DG, Rogers S, Wu TY, Higashide W, et al.: Integrated electromicrobial conversion of CO 2 to higher alcohols. Science 2012, 335:1596.
  • [9]Zhou J, Zhang HF, Zhang YP, Li Y, Ma YH: Designing and creating a modularized synthetic pathway in cyanobacterium Synechocystis enables production of acetone from carbon dioxide. Metab Eng 2012, 14:394-400.
  • [10]Niederholtmeyer H, Wolfstadter BT, Savage DF, Silver PA, Way JC: Engineering cyanobacteria to synthesize and export hydrophilic products. Appl Environ Microbiol 2010, 76:3462-6.
  • [11]Angermayr SA, Paszota M, Hellingwerf KJ: Engineering a cyanobacterial cell factory for production of lactic acid. Appl Environ Microbiol 2012, 78:7098-106.
  • [12]Joseph A, Aikawa S, Sasaki K, Tsuge Y, Matsuda F, Tanaka T, et al.: Utilization of lactic acid bacterial genes in Synechocystis sp PCC 6803 in the production of lactic acid. Biosci Biotechnol Biochem 2013, 77:966-70.
  • [13]Bentley FK, Melis A: Diffusion-based process for carbon dioxide uptake and isoprene emission in gaseous/aqueous two-phase photobioreactors by photosynthetic microorganisms. Biotechnol Bioeng 2012, 109:100-9.
  • [14]Li H, Liao JC: Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO 2 to 1,2-propanediol. Microb Cell Fact 2013, 12:4. BioMed Central Full Text
  • [15]Gunther A, Jakob T, Goss R, Konig S, Spindler D, Rabiger N, et al.: Methane production from glycolate excreting algae as a new concept in the production of biofuels. Bioresour Technol 2012, 121:454-7.
  • [16]Tang HY, Abunasser N, Garcia MED, Chen M, Ng KYS, Salley SO: Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiesel. Appl Energy 2011, 88:3324-30.
  • [17]Deng XD, Li YJ, Fei XW: Microalgae: a promising feedstock for biodiesel. Afr J Microbiol Res 2009, 3:1008-14.
  • [18]Boyle NR, Morgan JA: Computation of metabolic fluxes and efficiencies for biological carbon dioxide fixation. Metab Eng 2011, 13:150-8.
  • [19]Zhuang ZY, Li SY: Rubisco-based engineered Escherichia coli for in situ carbon dioxide recycling. Bioresour Technol 2013, 150:79-88.
  • [20]Guadalupe-Medina V, Wisselink HW, Luttik MAH, de Hulster E, Daran JM, Pronk JT, et al.: Carbon dioxide fixation by Calvin-Cycle enzymes improves ethanol yield in yeast. Biotechnol Biofuels 2013, 6:125-36. BioMed Central Full Text
  • [21]Friedli H, Lötscher H, Oeschger H, Siegenthaler U, Stauffer B: Ice core record of the 13 C/ 12 C ratio of atmospheric CO 2 in the past two centuries. Nature 1986, 324:237-8.
  • [22]Stuiver M, Braziunas TF: Tree cellulose 13 C/ 12 C isotope ratios and climatic change. Nature 1987, 328:58-60.
  • [23]Ciais P, Tans PP, Trolier M, White JWC, Francey RJ: A large northern hemisphere terrestrial CO 2 sink indicated by the 13 C/ 12 C ratio of atmospheric CO 2. Science 1995, 269:1098-102.
  • [24]Cai Z, Liu G, Zhang J, Li Y: Development of an activity-directed selection system enabled significant improvement of the carboxylation efficiency of Rubisco. Protein Cell 2014, 5:552-62.
  • [25]Cleland WWAT, Gutteridge S, Hartman FC, Lorimer GH: Mechanism of Rubisco: the carbamate as general base. Chem Rev 1998, 98:549-62.
  • [26]Higgins CF, Hiles ID, Salmond GP, Gill DR, Downie JA, Evans IJ, et al.: A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria. Nature 1986, 323:448-50.
  • [27]Parikh MR, Greene DN, Woods KK, Matsumura I: Directed evolution of RuBisCO hypermorphs through genetic selection in engineered E. coli. Protein Eng Des Sel 2006, 19:113-9.
  • [28]Robert J, Spreitzer SRP, Satagopan S: Phylogenetic engineering at an interface between large and small subunits imparts land-plant kinetic properties to algal Rubisco. Proc Natl Acad Sci USA 2005, 102:17225-30.
  • [29]Parry MA, Andralojc PJ, Mitchell RA, Madgwick PJ, Keys AJ: Manipulation of Rubisco: the amount, activity, function and regulation. J Exp Bot 2003, 54:1321-33.
  • [30]Zarzycki J, Axen SD, Kinney JN, Kerfeld CA: Cyanobacterial-based approaches to improving photosynthesis in plants. J Exp Bot 2013, 64:787-98.
  • [31]Price GD, Woodger FJ, Badger MR, Howitt SM, Tucker L: Identification of a SulP-type bicarbonate transporter in marine cyanobacteria. Proc Natl Acad Sci USA 2004, 101:18228-33.
  • [32]Jn B: Carbon dioxide equilibria and their applications. Lewis Publishers Inc, Michigan, USA; 1991.
  • [33]Alper H, Fischer C, Nevoigt E, Stephanopoulos G: Tuning genetic control through promoter engineering. Proc Natl Acad Sci USA 2005, 102:12678-83.
  • [34]Fischer E, Zamboni N, Sauer U: High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived C-13 constraints. Anal Biochem 2004, 325:308-16.
  • [35]Chen X, Alonso AP, Allen DK, Reed JL, Shachar-Hill Y: Synergy between (13)C-metabolic flux analysis and flux balance analysis for understanding metabolic adaptation to anaerobiosis in E. coli. Metab Eng 2011, 13:38-48.
  • [36]Bremer H, Dennis PP: Modulation of chemical composition and other parameters of the cell by growth rate. E Coli Salmonella Cell Mol Biol 1996, 2:1553-69.
  • [37]Moreno S, Klar A, Nurse P: Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol 1991, 194:795-823.
  • [38]Shastri AA, Morgan JA: Flux balance analysis of photoautotrophic metabolism. Biotechnol Prog 2005, 21:1617-26.
  • [39]Griffiths MJ, Harrison STL: Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 2009, 21:493-507.
  • [40]Hambourger M, Moore GF, Kramer DM, Gust D, Moore AL, Moore TA: Biology and technology for photochemical fuel production. Chem Soc Rev 2009, 38:25-35.
  • [41]Melis A: Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 2009, 177:272-80.
  • [42]Stephenson PG, Moore CM, Terry MJ, Zubkov MV, Bibby TS: Improving photosynthesis for algal biofuels: toward a green revolution. Trends Biotechnol 2011, 29:615-23.
  • [43]Kebeish R, Niessen M, Thiruveedhi K, Bari R, Hirsch HJ, Rosenkranz R, et al.: Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol 2007, 25:593-9.
  • [44]Evans JR: Improving photosynthesis. Plant Physiol 2013, 162:1780-93.
  • [45]Whitney SM, Houtz RL, Alonso H: Advancing our understanding and capacity to engineer nature’s CO 2 -sequestering enzyme, Rubisco. Plant Physiol 2011, 155:27-35.
  • [46]Mitra M, Lato SM, Ynalvez RA, Xiao Y, Moroney JV: Identification of a new chloroplast carbonic anhydrase in Chlamydomonas reinhardtii. Plant Physiol 2004, 135:173-82.
  • [47]Rae BD, Long BM, Badger MR, Price GD: Functions, compositions, and evolution of the two types of carboxysomes: polyhedral microcompartments that facilitate CO 2 fixation in cyanobacteria and some proteobacteria. Microbiol Mol Biol Rev 2013, 77:357-79.
  • [48]Cannon GC, Heinhorst S, Kerfeld CA: Carboxysomal carbonic anhydrases: structure and role in microbial CO2 fixation. Biochim Biophys Acta 2010, 1804:382-92.
  • [49]Bonacci W, Teng PK, Afonso B, Niederholtmeyer H, Grob P, Silver PA, et al.: Modularity of a carbon-fixing protein organelle. Proc Natl Acad Sci USA 2012, 109:478-83.
  • [50]Luo B, Groenke K, Takors R, Wandrey C, Oldiges M: Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography-mass spectrometry. J Chromatogr A 2007, 1147:153-64.
  • [51]Uematsu K, Suzuki N, Iwamae T, Inui M, Yukawa H: Increased fructose 1,6-bisphosphate aldolase in plastids enhances growth and photosynthesis of tobacco plants. J Exp Bot 2012, 63:3001-9.
  • [52]Tang D, Han W, Li P, Miao X, Zhong J: CO 2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour Technol 2011, 102:3071-6.
  • [53]Sydney EB, Sturm W, Carvalho JC, Thomaz-Soccol V, Larroche C, Pandey A, et al.: Potential carbon dioxide fixation by industrially important microalgae. Bioresour Technol 2010, 101:5892-6.
  • [54]Jin H-F, Lim B-R, Lee K: Influence of nitrate feeding on carbon dioxide fixation by microalgae. Journal of environmental science and health. J Environ Sci Heal A 2006, 41:2813-24.
  • [55]Lam MKLK: Effect of carbon source towards the growth of Chlorella vulgaris for CO 2 bio-mitigation and biodiesel production. Int J Greenhouse Gas Control 2013, 14:169-76.
  • [56]Morais MG, Costa JA: Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnol Lett 2007, 29:1349-52.
  • [57]Gonzalez Lopez CV, Acien Fernandez FG, Fernandez Sevilla JM, Sanchez Fernandez JF, Ceron Garcia MC, Molina GE: Utilization of the cyanobacteria Anabaena sp. ATCC 33047 in CO 2 removal processes. Bioresour Technol 2009, 100:5904-10.
  • [58]Jacob-Lopes E: CFLL, Franco TT. Biomass production and carbon dioxide fixation by Aphanothece microscopica Nägeli in a bubble column photobioreactor. Biochem Eng J 2008, 40:27-34.
  • [59]Mazzuca Sobczuk T, Garcia Camacho F, Camacho Rubio F, Acien Fernandez FG, Molina GE: Carbon dioxide uptake efficiency by outdoor microalgal cultures in tubular airlift photobioreactors. Biotechnol Bioeng 2000, 67:465-75.
  文献评价指标  
  下载次数:38次 浏览次数:52次