期刊论文详细信息
BMC Bioinformatics
Visualization and correction of automated segmentation, tracking and lineaging from 5-D stem cell image sequences
Eric Wait3  Mark Winter3  Chris Bjornsson1  Erzsebet Kokovay2  Yue Wang1  Susan Goderie1  Sally Temple1  Andrew R Cohen3 
[1] Neural Stem Cell Institute, 12144 Rensselaer, USA
[2] UT Health Science Center, 78229 San Antonio, USA
[3] Drexel University, 19104 Philadelphia, USA
关键词: Image montage reconstruction;    CUDA;    Confocal microscopy;    Validation and correction;    Lineaging;    Time lapse;    Stem cell;    Stereoscopic 3-D;    3-D display;    Volumetric texture rendering;   
Others  :  1085595
DOI  :  10.1186/1471-2105-15-328
 received in 2014-04-22, accepted in 2014-09-19,  发布年份 2014
PDF
【 摘 要 】

Background

Neural stem cells are motile and proliferative cells that undergo mitosis, dividing to produce daughter cells and ultimately generating differentiated neurons and glia. Understanding the mechanisms controlling neural stem cell proliferation and differentiation will play a key role in the emerging fields of regenerative medicine and cancer therapeutics. Stem cell studies in vitro from 2-D image data are well established. Visualizing and analyzing large three dimensional images of intact tissue is a challenging task. It becomes more difficult as the dimensionality of the image data increases to include time and additional fluorescence channels. There is a pressing need for 5-D image analysis and visualization tools to study cellular dynamics in the intact niche and to quantify the role that environmental factors play in determining cell fate.

Results

We present an application that integrates visualization and quantitative analysis of 5-D (x,y,z,t,channel) and large montage confocal fluorescence microscopy images. The image sequences show stem cells together with blood vessels, enabling quantification of the dynamic behaviors of stem cells in relation to their vascular niche, with applications in developmental and cancer biology. Our application automatically segments, tracks, and lineages the image sequence data and then allows the user to view and edit the results of automated algorithms in a stereoscopic 3-D window while simultaneously viewing the stem cell lineage tree in a 2-D window. Using the GPU to store and render the image sequence data enables a hybrid computational approach. An inference-based approach utilizing user-provided edits to automatically correct related mistakes executes interactively on the system CPU while the GPU handles 3-D visualization tasks.

Conclusions

By exploiting commodity computer gaming hardware, we have developed an application that can be run in the laboratory to facilitate rapid iteration through biological experiments. We combine unsupervised image analysis algorithms with an interactive visualization of the results. Our validation interface allows for each data set to be corrected to 100% accuracy, ensuring that downstream data analysis is accurate and verifiable. Our tool is the first to combine all of these aspects, leveraging the synergies obtained by utilizing validation information from stereo visualization to improve the low level image processing tasks.

【 授权许可】

   
2014 Wait et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113174727241.pdf 2225KB PDF download
Figure 5. 72KB Image download
Figure 4. 44KB Image download
Figure 3. 105KB Image download
Figure 2. 79KB Image download
Figure 1. 163KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Shen Q, Wang Y, Kokovay E, Lin G, Chuang SM, Goderie SK, Roysam B, Temple S: Adult svz stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 2008, 3(3):289-300. doi:10.1016/j.stem.2008.07.026
  • [2]Kokovay E, Goderie S, Wang Y, Lotz S, Lin G, Sun Y, Roysam B, Shen Q, Temple S: Adult svz lineage cells home to and leave the vascular niche via differential responses to sdf1/cxcr4 signaling. Cell Stem Cell 2010, 7(2):163-173. doi:10.1016/j.stem.2010.05.019
  • [3]Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B, Garcia-Verdugo JM, Doetsch F: A specialized vascular niche for adult neural stem cells. Cell Stem Cell 2008, 3(3):279-288. doi:10.1016/j.stem.2008.07.025
  • [4]Cohen AR, Bjornsson C, Temple S, Banker G, Roysam B: Automatic summarization of changes in biological image sequences using algorithmic information theory. IEEE Trans Pattern Anal Mach Intell 2009, 31(8):1386-1403.
  • [5]Cohen AR, Gomes F, Roysam B, Cayouette M: Computational prediction of neural progenitor cell fates. Nat Methods 2010, 7(3):213-218.
  • [6]Winter M, Wait E, Roysam B, Goderie S, Kokovay E, Temple S, Cohen AR: Vertebrate neural stem cell segmentation, tracking and lineaging with validation and editing. Nat Protoc 2011, 6(12):1942-1952. doi:10.1038/nprot.2011.422
  • [7]Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A: Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 1999, 97(6):703-716. doi:S0092-8674(00)80783-7
  • [8]Ortega F, Costa MR, Simon-Ebert T, Schroeder T, Gotz M, Berninger B: Using an adherent cell culture of the mouse subependymal zone to study the behavior of adult neural stem cells on a single-cell level. Nat Protoc 2011, 6(12):1847-1859. doi:10.1038/nprot.2011.404 nprot.2011.404
  • [9]BioFormats [http://loci.wisc.edu/software/bio-formats webcite]
  • [10]Michel R, Steinmeyer R, Falk M, Harms GS: A new detection algorithm for image analysis of single, fluorescence-labeled proteins in living cells. Microsc Res Tech 2007, 70(9):763-770. doi:10.1002/jemt.20485
  • [11]Otsu N: A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 1979, 9(1):62-66.
  • [12]Ceccarelli M: A finite markov random field approach to fast edge-preserving image recovery. Image Vis Comput 2007, 25(6):792-804. doi:10.1016/j.imavis.2006.05.021
  • [13]Narayanaswamy A, Dwarakapuram S, Bjornsson CS, Cutler BM, Shain W, Roysam B: Robust adaptive 3-d segmentation of vessel laminae from fluorescence confocal microscope images and parallel gpu implementation. IEEE Trans Med Imaging 2010, 29(3):583-597. doi:10.1109/TMI.2009.2022086
  • [14]Al-Kofahi O, Radke RJ, Goderie SK, Shen Q, Temple S, Roysam B: Automated cell lineage tracing: a high-throughput method to analyze cell proliferative behavior developed using mouse neural stem cells. Cell Cycle 2006, 5(3):327-335.
  • [15]QHULL [http://www.qhull.org/ webcite]
  • [16]Winter M, Fang C, Banker G, Roysam B, Cohen A: Axonal transport analysis using multitemporal association tracking. 5 2012, 1:35-48.
  • [17]Wan Y, Otsuna H, Chien CB, Hansen C: An interactive visualization tool for multi-channel confocal microscopy data in neurobiology research. IEEE Trans Vis Comput Graph 2009, 15(6):1489-1496. doi:10.1109/TVCG.2009.118
  • [18]Theodoridis S, Koutroumbas K: Pattern recognition. San, Diego: CA: Academic Press; 2009.
  • [19]Mankowski WC, Winter M, Wait E, Lodder MJ, Schumacher TN, Naik SH, Cohen AR: Segmentation of occluded hematopoietic stem cells from tracking. In 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Journals & Magazines; 2014:5510-5513.
  • [20]Corporation N: Nvidia 3-d vision automatic best practices guide. Report, July 2010. [http://developer.download.nvidia.com/whitepapers/2010/NVIDIA%203D%20Vision%20Automatic.pdf webcite]
  • [21]Murray JI, Bao Z, Boyle TJ, Waterston RH: The lineaging of fluorescently-labeled caenorhabditis elegans embryos with starrynite and acetree. Nat Protoc 2006, 1(3):1468-1476. doi:10.1038/nprot.2006.222
  • [22]Aydin Z, Murray JI, Waterston RH, Noble WS: Using machine learning to speed up manual image annotation: application to a 3d imaging protocol for measuring single cell gene expression in the developing c. elegans embryo. BMC Bioinformatics 2010, 11(1):84. doi:10.1186/1471-2105-11-84 BioMed Central Full Text
  • [23]Walter T, Shattuck DW, Baldock R, Bastin ME, Carpenter AE, Duce S, Ellenberg J, Fraser A, Hamilton N, Pieper S, Ragan MA, Schneider JE, Tomancak P, Heriche JK: Visualization of image data from cells to organisms. Nat Methods 2010, 7(3 Suppl):26-41. doi:10.1038/nmeth.1431
  • [24]Schroeder W, Martin K, Lorensen B: The Visualization Toolkit, 2nd edn. Upper Saddle River: Prentice Hall PTR; 1998. 645
  • [25]De Chaumont F, Dallongeville S, Olivo-Marin JC: Icy: a new open-source community image processing software. In Biomedical Imaging: From Nano to Macro, 2011 IEEE International Symposium On. IEEE Conference Publications; 2011:234-237. doi:10.1109/ISBI.2011.5872395
  • [26]Peng H, Ruan Z, Long F, Simpson JH, Myers EW: V3d enables real-time 3d visualization and quantitative analysis of large-scale biological image data sets. Nat Biotech 2010, 28(4):348-353. http://www.nature.com/nbt/journal/v28/n4/abs/nbt.1612.html webcite, doi:10.1038/nbt.1612
  • [27]Peng H, Bria A, Zhou Z, Iannello G, Long F: Extensible visualization and analysis for multidimensional images using vaa3d. Nat Protoc 2014, 9(1):193-208. doi:10.1038/nprot.2014.011
  • [28]Jug F, Pietzsch T, Preibisch S, Tomancak P: Bioimage informatics in the context of drosophila research. Methods 2014, 68(1):60-73. doi:10.1016/j.ymeth.2014.04.004
  • [29]Amat F, Keller PJ: Towards comprehensive cell lineage reconstructions in complex organisms using light-sheet microscopy. Development, Growth & Differentiation 2013, 55(4):563-578. doi:10.1111/dgd.12063
  • [30]Schmid B, Schindelin J, Cardona A, Longair M, Heisenberg M: A high-level 3d visualization api for java and imagej. BMC Bioinformatics 2010, 11:274. doi:10.1186/1471-2105-11-274 BioMed Central Full Text
  • [31]Clements RJ, Mintz EM, Blank JL: High resolution stereoscopic volume visualization of the mouse arginine vasopressin system. J Neurosci Methods 2010, 187(1):41-45. doi:10.1016/j.jneumeth.2009.12.011
  文献评价指标  
  下载次数:51次 浏览次数:15次