期刊论文详细信息
Chemistry Central Journal
Computational analysis and predictive modeling of polymorph descriptors
Yugyung Lee2  Sourav Jana2  Gayathri Acharya1  Chi H Lee1 
[1] Division of Pharmaceutical Sciences, College of Pharmacy, University of Missouri-Kansas City, Missouri, MO 64108, USA
[2] School of Computing and Engineering, University of Missouri-Kansas City, Missouri, MO, 64110, USA
关键词: Mitoxantrone;    Polymorph;    BCRP;    QSAR;    Binding affinity;   
Others  :  787969
DOI  :  10.1186/1752-153X-7-23
 received in 2013-01-05, accepted in 2013-01-23,  发布年份 2013
PDF
【 摘 要 】

Background

A computation approach based on integrating high throughput binding affinity comparison and binding descriptor classifications was utilized to establish the correlation among substrate properties and their affinity to Breast Cancer Resistant Protein (BCRP). The uptake rates of Mitoxantrone in the presence of various substrates were evaluated as an in vitro screening index for comparison of their binding affinity to BCRP.

The effects of chemical properties of various chemotherapeutics, such as antiviral, antibiotic, calcium channel blockers, anticancer and antifungal agents, on their affinity to BCRP, were evaluated using HEK (human embryonic kidney) cells in which 3 polymorphs, namely 482R (wild type) and two mutants (482G and 482T) of BCRP, have been identified. The quantitative structure activity relationship (QSAR) model was developed using the sequential approaches of Austin Model 1 (AM1), CODESSA program, heuristic method (HM) and multiple linear regression (MLR) to establish the relationship between structural specificity of BCRP substrates and their uptake rates by BCRP polymorphs.

Results

The BCRP mutations may induce conformational changes as manifested by the altered uptake rates of Mitoxantrone by BCRP in the presence of other competitive binding substrates that have a varying degree of affinities toward BCRP efflux. This study also revealed that the binding affinity of test substrates to each polymorph was affected by varying descriptors, such as constitutional, topological, geometrical, electrostatic, thermodynamic, and quantum chemical descriptors.

Conclusion

Descriptors involved with the net surface charge and energy level of substrates seem to be the common integral factors for defining binding specificity of selected substrates to BCRP polymorph. The reproducible outcomes and validation process further supported the accuracy of the computational model in assessing the correlation among descriptors involved with substrate affinity to BCRP polymorph. A quantitative computation approach will provide important structural insight into optimal designing of new chemotherapeutic agents with improved pharmacological efficacies.

【 授权许可】

   
2013 Lee et al.; licensee Chemistry Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140702225759915.pdf 957KB PDF download
Figure 5. 76KB Image download
Figure 4. 75KB Image download
Figure 3. 79KB Image download
Figure 2. 33KB Image download
Figure 1. 86KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Gilson MK, Zhou HX: Calculation of protein-ligand binding affinities. Annu Rev Biophys Biomol Struct 2007, 36:21-42.
  • [2]Xie L, Evangelidis T, Bourne PE: Drug discovery using chemical systems biology: weak inhibition of multiple kinases may contribute to the anti-cancer effect of nelfinavir. PLoS Comput Biol 2011, 7:e1002037.
  • [3]Horie K, Tang F, Borchardt RT: Isolation and characterization of Caco-2 subclones expressing high levels of multidrug resistance protein efflux transporter. Pharm Res 2003, 20:161-168.
  • [4]Copeland RA, Pompliano DL, Meek TD: Drug-target residence time and its implications for lead optimization. Nat Rev Drug Discov 2006, 5:730-739.
  • [5]Lu H, Tonge PJ: Drug-target residence time: critical information for lead optimization. Curr Opin Chem Biol 2010, 14:467-474.
  • [6]Guo D, Mulder-Krieger T, Ijzerman AP, Heitman LH: Functional efficacy of adenosine A(2A) receptor agonists is positively correlated to their receptor residence time. Br J Pharmacol 2012, 166(6):1846-1859.
  • [7]Ma XH, Shi Z, Tan C, Jiang Y, Go ML, et al.: In-silico approaches to multi-target drug discovery: computer aided multi-target drug design, multi-target virtual screening. Pharm Res 2010, 27:739-749.
  • [8]Matsson P, Pedersen JM, Norinder U, Bergstrom CA, Artursson P: Identification of novel specific and general inhibitors of the three major human ATP-binding cassette transporters P-gp, BCRP and MRP2 among registered drugs. Pharm Res 2009, 26:1816-1831.
  • [9]Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, et al.: Membrane transporters in drug development. Nat Rev Drug Discov 2010, 9:215-236.
  • [10]Lin JH, Yamazaki M: Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin Pharmacokinet 2003, 42:59-98.
  • [11]Mizuno N, Niwa T, Yotsumoto Y, Sugiyama Y: Impact of drug transporter studies on drug discovery and development. Pharmacol Rev 2003, 55:425-461.
  • [12]Croop JM, Tiller GE, Fletcher JA, Lux ML, Raab E, et al.: Isolation and characterization of a mammalian homolog of the drosophila white gene. Gene 1997, 185:77-85.
  • [13]Allen JD, Schinkel AH: Multidrug resistance and pharmacological protection mediated by the breast cancer resistance protein (BCRP/ABCG2). Mol Cancer Ther 2002, 1:427-434.
  • [14]Bates SE, Robey R, Miyake K, Rao K, Ross DD, et al.: The role of half-transporters in multidrug resistance. J Bioenerg Biomembr 2001, 33:503-511.
  • [15]Litman T, Brangi M, Hudson E, Fetsch P, Abati A, et al.: The multidrug-resistant phenotype associated with overexpression of the new ABC half-transporter, MXR (ABCG2). J Cell Sci 2000, 113(Pt 11):2011-2021.
  • [16]Lemos C, Kathmann I, Giovannetti E, Dekker H, Scheffer GL, et al.: Folate deprivation induces BCRP (ABCG2) expression and mitoxantrone resistance in Caco-2 cells. Int J Cancer 2008, 123:1712-1720.
  • [17]Seamon JA, Rugg CA, Emanuel S, Calcagno AM, Ambudkar SV, et al.: Role of the ABCG2 drug transporter in the resistance and oral bioavailability of a potent cyclin-dependent kinase/Aurora kinase inhibitor. Mol Cancer Ther 2006, 5:2459-2467.
  • [18]Ishikawa T, Kasamatsu S, Hagiwara Y, Mitomo H, Kato R, et al.: Expression and functional characterization of human ABC transporter ABCG2 variants in insect cells. Drug Metab Pharmacokinet 2003, 18:194-202.
  • [19]Mitomo H, Kato R, Ito A, Kasamatsu S, Ikegami Y, et al.: A functional study on polymorphism of the ATP-binding cassette transporter ABCG2: critical role of arginine-482 in methotrexate transport. Biochem J 2003, 373:767-774.
  • [20]Robey RW, Honjo Y, van de Laar A, Miyake K, Regis JT, et al.: A functional assay for detection of the mitoxantrone resistance protein, MXR (ABCG2). Biochim Biophys Acta 2001, 1512:171-182.
  • [21]Kondo C, Suzuki H, Itoda M, Ozawa S, Sawada J, et al.: Functional analysis of SNPs variants of BCRP/ABCG2. Pharm Res 2004, 21:1895-1903.
  • [22]Mao Q: BCRP/ABCG2 in the placenta: expression, function and regulation. Pharm Res 2008, 25:1244-1255.
  • [23]Jaffrezou JP, Herbert JM, Levade T, Gau MN, Chatelain P, et al.: Reversal of multidrug resistance by calcium channel blocker SR33557 without photoaffinity labeling of P-glycoprotein. J Biol Chem 1991, 266:19858-19864.
  • [24]Sugimoto Y, Tsukahara S, Imai Y, Ueda K, Tsuruo T: Reversal of breast cancer resistance protein-mediated drug resistance by estrogen antagonists and agonists. Mol Cancer Ther 2003, 2:105-112.
  • [25]Gupta A, Unadkat JD, Mao Q: Interactions of azole antifungal agents with the human breast cancer resistance protein (BCRP). J Pharm Sci 2007, 96:3226-3235.
  • [26]Jain R, Majumdar S, Nashed Y, Pal D, Mitra AK: Circumventing P-glycoprotein-mediated cellular efflux of quinidine by prodrug derivatization. Mol Pharm 2004, 1:290-299.
  • [27]Matsson P, Englund G, Ahlin G, Bergstrom CA, Norinder U, et al.: A global drug inhibition pattern for the human ATP-binding cassette transporter breast cancer resistance protein (ABCG2). J Pharmacol Exp Ther 2007, 323:19-30.
  • [28]Allen JD, van Loevezijn A, Lakhai JM, van der Valk M, van Tellingen O, et al.: Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C. Mol Cancer Ther 2002, 1:417-425.
  • [29]Yamazaki M, Fujimoto H, Kawasaki T: Chemistry of tremorogenic metabolites. I. Fumitremorgin a from Aspergillus fumigatus. Chem Pharm Bull 1980, 28:245-254.
  • [30]Choi JS, Chung HY, Kang SS, Jung MJ, Kim JW, et al.: The structure-activity relationship of flavonoids as scavengers of peroxynitrite. Phytother Res 2002, 16:232-235.
  • [31]Erkoc S, Yilmazer M, Erkoc F: Structural and electronic properties of xanthohumol metabolite. J Mol Struct (THEOCHEM) 2002, 583:169-172.
  • [32]Roy J, Cyert MS: Cracking the phosphatase code: docking interactions determine substrate specificity. Sci Signal 2009, 2:re9.
  • [33]Branca MA: Multi-kinase inhibitors create buzz at ASCO. Nat Biotechnol 2005, 23:639.
  • [34]Iadevaia S, Lu Y, Morales FC, Mills GB, Ram PT: Identification of optimal drug combinations targeting cellular networks: integrating phospho-proteomics and computational network analysis. Cancer Res 2010, 70:6704-6714.
  • [35]Chang RL, Xie L, Bourne PE, Palsson BO: Drug off-target effects predicted using structural analysis in the context of a metabolic network model. PLoS Comput Biol 2010, 6:e1000938.
  • [36]Gilbert D, Fuss H, Gu X, Orton R, Robinson S, et al.: Computational methodologies for modelling, analysis and simulation of signalling networks. Brief Bioinform 2006, 7:339-353.
  • [37]Kang J, Hwang JU, Lee M, Kim YY, Assmann SM, et al.: PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci USA 2010, 107:2355-2360.
  • [38]Schinkel AH, Jonker JW: Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev 2003, 55:3-29.
  • [39]Bharthuar AKT, Haas KN, Mashtare T, Black J, Baer M, Yang G, Khushalani N, Iyer RV: Expression of breast cancer resistance protein (BCRP) in esophageal cancers (EC). J Clin Oncol 2009, 27:e13529.
  • [40]Zimmermann C, Hruz P, Gutmann H, Terracciano L, Beuers U, et al.: Decreased expression of breast cancer resistance protein in the duodenum in patients with obstructive cholestasis. Digestion 2006, 74:101-108.
  • [41]Tanabe M, Ieiri I, Nagata N, Inoue K, Ito S, et al.: Expression of P-glycoprotein in human placenta: relation to genetic polymorphism of the multidrug resistance (MDR)-1 gene. J Pharmacol Exp Ther 2001, 297:1137-1143.
  • [42]Erdelyi DJ, Kamory E, Zalka A, Semsei AF, Csokay B, et al.: The role of ABC-transporter gene polymorphisms in chemotherapy induced immunosuppression, a retrospective study in childhood acute lymphoblastic leukaemia. Cell Immunol 2006, 244:121-124.
  • [43]Roberts RL, Joyce PR, Mulder RT, Begg EJ, Kennedy MA: A common P-glycoprotein polymorphism is associated with nortriptyline-induced postural hypotension in patients treated for major depression. Pharmacogenomics J 2002, 2:191-196.
  • [44]Deen M, Vries EG, Timens W, Scheper RJ, Timmer-Bosscha H, et al.: ATP-binding cassette (ABC) transporters in normal and pathological lung. Respir Res 2005, 6:59. BioMed Central Full Text
  • [45]Kurzawski M, Drozdzik M, Suchy J, Kurzawski G, Bialecka M, et al.: Polymorphism in the P-glycoprotein drug transporter MDR1 gene in colon cancer patients. Eur J Clin Pharmacol 2005, 61:389-394.
  • [46]Weiss J, Rose J, Storch CH, Ketabi-Kiyanvash N, Sauer A, et al.: Modulation of human BCRP (ABCG2) activity by anti-HIV drugs. J Antimicrob Chemother 2007, 59:238-245.
  • [47]Pollex EK, Anger G, Hutson J, Koren G, Piquette-Miller M: Breast cancer resistance protein (BCRP)-mediated glyburide transport: effect of the C421A/Q141K BCRP single-nucleotide polymorphism. Drug Metab Dispos 2010, 38:740-744.
  • [48]Hu LL, Wang XX, Chen X, Chang J, Li C, et al.: BCRP gene polymorphisms are associated with susceptibility and survival of diffuse large B-cell lymphoma. Carcinogenesis 2007, 28:1740-1744.
  • [49]Lee SS, Jeong HE, Yi JM, Jung HJ, Jang JE, et al.: Identification and functional assessment of BCRP polymorphisms in a Korean population. Drug Metab Dispos 2007, 35:623-632.
  • [50]Mestres J, Gregori-Puigjane E: Conciliating binding efficiency and polypharmacology. Trends Pharmacol Sci 2009, 30:470-474.
  • [51]Moaddel R, Bighi F, Yamaguchi R, Patel S, Ravichandran S, et al.: Stereoselective binding of chiral ligands to single nucleotide polymorphisms of the human organic cation transporter-1 determined using cellular membrane affinity chromatography. Anal Biochem 2010, 401:148-153.
  • [52]Murai J, Huang SYN, Das BB, Renaud A, Zhang Y, Doroshow JH, Ji J, Takeda S, Pommier Y: Trapping of PARP1 and PARP2 by Clinical PARP Inhibitors. Cancer Res 2012, 72((21):5588.
  • [53]Deeken JF, Robey RW, Shukla S, Steadman K, Chakraborty AR, et al.: Identification of compounds that correlate with ABCG2 transporter function in the national cancer institute anticancer drug screen. Mol Pharmacol 2009, 76:946-956.
  • [54]Yoo JW, Choe ES, Ahn SM, Lee CH: Pharmacological activity and protein phosphorylation caused by nitric oxide-releasing microparticles. Biomaterials 2010, 31:552-558.
  • [55]Artursson P, Karlsson J: Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Comm. 1991, 175:880-885.
  • [56]Holder AJ, Ye L, Yourtee DM, Agarwal A, Eick JD, et al.: An application of the QM-QSAR method to predict and rationalize lipophilicity of simple monomers. Dent Mater 2005, 21:591-598.
  • [57]Dewar MJSZ EG, Healy EF: AM1: a New general purpose quantum mechanical molecular model. J Am Chem Soc 1985, 107:3902-3909.
  • [58]Katritzky AR, Kuanar M, Slavov S, Hall CD, Karelson M, et al.: Quantitative correlation of physical and chemical properties with chemical structure: utility for prediction. Chem Rev 2010, 110:5714-5789.
  • [59]Karelson MM, Uko W, Yilin K, Alan R: QSPR and QSAR models derived using large molecular descriptor spaces. A review of CODESSA applications. Collect Czech Chem Commun 1999, 64:1551-1571.
  • [60]Chen J, Peijnenburg WJGM, Wang L: Using PM3 Hamiltonian, factor analysis and regression analysis in developing quantitative structure–property relationships for photohydrolysis quantum yields of substituted aromatic halides. Chemosphere 1998, 36:2833-2853.
  • [61]Richard D, Cramer JDB, Patterson DE, Frank IE: Crossvalidation, bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies. Quant Struct-Act Relat 1988, 7:18-25.
  • [62]Konovalov DA, Llewellyn LE, Vander Heyden Y, Coomans D: Robust cross-validation of linear regression QSAR models. J Chem Inf Model 2008, 48:2081-2094.
  文献评价指标  
  下载次数:35次 浏览次数:11次