期刊论文详细信息
Biotechnology for Biofuels
Sorbitol required for cell growth and ethanol production by Zymomonas mobilis under heat, ethanol, and osmotic stresses
Kaewta Sootsuwan5  Pornthap Thanonkeo3  Nawapote Keeratirakha5  Sudarat Thanonkeo1  Prasit Jaisil4  Mamoru Yamada2 
[1] Walai Rukhavej Botanical Research Institute, Mahasarakham University, Mahasarakham 44150, Thailand
[2] Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
[3] Fermentation Research Center for Value Added Agricultural Products, Khon Kaen University, Khon Kaen 40002, Thailand
[4] Department of Plant Sciences and Agricultural Resources, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
[5] Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
关键词: Fusion-PCR-based construction technique;    Osmotic stress;    Ethanol stress;    Heat stress;    Ethanol production;    Glucose-fructose oxidoreductase;    Zymomonas mobilis;   
Others  :  794334
DOI  :  10.1186/1754-6834-6-180
 received in 2013-04-27, accepted in 2013-11-19,  发布年份 2013
PDF
【 摘 要 】

Background

During ethanol fermentation, the ethanologenic bacterium, Zymomonas mobilis may encounter several environmental stresses such as heat, ethanol and osmotic stresses due to high sugar concentration. Although supplementation of the compatible solute sorbitol into culture medium enhances cell growth of Z. mobilis under osmotic stress, the protective function of this compound on cell growth and ethanol production by this organism under other stresses such as heat and ethanol has not been described yet. The formation of sorbitol in Z. mobilis was carried out by the action of the glucose-fructose oxidoreductase (GFOR) enzyme which is regulated by the gfo gene. Therefore, the gfo gene in Z. mobilis was disrupted by the fusion-PCR-based construction technique in the present study, and the protective function of sorbitol on cell growth, protein synthesis and ethanol production by Z. mobilis under heat, ethanol, and osmotic stresses was investigated.

Results

Based on the fusion-PCR-based construction technique, the gfo gene in Z. mobilis was disrupted. Disruption of the Z. mobilis gfo gene resulted in the reduction of cell growth and ethanol production not only under osmotic stress but also under heat and ethanol stresses. Under these stress conditions, the transcription level of pdc, adhA, and adhB genes involved in the pyruvate-to-ethanol (PE) pathway as well as the synthesis of proteins particularly in Z. mobilis disruptant strain were decreased compared to those of the parent. These findings suggest that sorbitol plays a crucial role not only on cell growth and ethanol production but also on the protection of cellular proteins from stress responses.

Conclusion

We showed for the first time that supplementation of the compatible solute sorbitol not only promoted cell growth but also increased the ethanol fermentation capability of Z. mobilis under heat, ethanol, and osmotic stresses. Although the molecular mechanism involved in tolerance to stress conditions after sorbitol supplementation is still unclear, this research has provided useful information for the development of the effective ethanol fermentation process particularly under environmental conditions with high temperature or high ethanol and sugar concentration conditions.

【 授权许可】

   
2013 Sootsuwan et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705064922268.pdf 1938KB PDF download
Figure 5. 58KB Image download
Figure 4. 54KB Image download
Figure 3. 28KB Image download
Figure 2. 130KB Image download
Figure 1. 33KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Sprenger GA: Carbohydrate metabolism in Zymomonas mobilis: a catabolic highway with some scenic routes. FEMS Microbiol Lett 1996, 145:301-307.
  • [2]Barnell WO, Yi KC, Conway T: Sequence and genetic organization of a Zymomonas mobilis gene cluster that encodes several enzymes of glucose metabolism. J Bacteriol 1990, 172:7227-7240.
  • [3]Seo JS, Chong H, Park HS, Yoon KO, Jung C, Kim JJ, Hong JH, Kim H, Kim JH, Kil JI, Park CJ, Oh HM, Lee JS, Jin SJ, Um HW, Lee HJ, Oh SJ, Kim JY, Kang HL, Lee SY, Lee KJ, Kang HS: The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4. Nature Biotechnol 2005, 23:63-68.
  • [4]Fuhrer T, Fischer E, Sauer U: Experimental identification and quantification of glucose metabolism in seven bacterial species. J Bacteriol 2005, 187:1581-1590.
  • [5]Gunasekaran P, Chandra Raj K: Ethanol fermentation technology – Zymomonas mobilis. Current Science (India) 1999, 77:56-68.
  • [6]Barrow KD, Collins JG, Leigh DA, Rogers PL, Warr RG: Sorbitol production by Zymomonas mobilis. Appl Microbiol Biotechnol 1984, 20:225-233.
  • [7]Leigh D, Scopes RK, Rogers PL: A proposed pathway for sorbitol production in Zymomonas mobilis. Appl Microbiol Biotechnol 1984, 20:413-415.
  • [8]Viikari L: Carbohydrate metabolism in Zymomonas mobilis. Crit Rev Biotechnol 1988, 7:237-261.
  • [9]Zachariou M, Scopes RK: Glucose-fructose oxidoreductase, a new enzyme isolated from Zymomonas mobilis that is responsible for sorbitol production. J Bacteriol 1986, 167:863-869.
  • [10]Loos H, Sahm H, Sprenger GA: Glucose-fructose oxidoreductase, a periplasmic enzyme of Zymomonas mobilis, is active in its precursor form. FEMS Microbiol Lett 1993, 107:293-298.
  • [11]Loos H, Kramer R, Sahm H, Sprenger GA: Sorbitol promotes growth of Zymomonas mobilis in environmental with high concentrations of sugar: evidence for a physiological function of glucose-fructose oxidoreductase in osmoprotection. J Bacteriol 1994, 176:7688-7693.
  • [12]Thanonkeo P, Laopaiboon P, Sootsuwan K, Yamada M: Magnesium ions improve growth and ethanol production of Zymomonas mobilis under heat or ethanol stress. Biotechnol 2007, 6:112-119.
  • [13]He MX, Wu B, Shui ZX, Hu QC, Wang WG, Tan XY, Tang XY, Zhu QL, Pan K, Li Q, Su XH: Transcriptome profiling of Zymomonas mobilis under ethanol stress. Biotechnol Biofuels 2012, 5:75-82. BioMed Central Full Text
  • [14]Ghose TK, Bandyopadhyay KK: Studies on immobilized Saccharomyces cerevisiae. II. Effect of temperature distribution on continuous rapid ethanol formation in molasses fermentation. Biotechnol Bioeng 2004, 24:797-804.
  • [15]Attfield PV: Stress tolerance: the key to effective strains of industrial baker’s yeast. Nat Biotechnol 1997, 15:1351-1357.
  • [16]Auesukaree C, Damnernsawad A, Kruatrachue M, Pokethitiyook P, Boonchird C, Kaneko Y, Harashima S: Genome-wide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae. J Appl Genet 2009, 50:301-310.
  • [17]Michel GPF, Starka J: Effect of ethanol and heat stresses on the protein pattern of Zymomonas mobilis. J Bacteriol 1986, 165:1040-1042.
  • [18]Stanley GA, Hobley TJ, Pamment NB: Effect of acetaldehyde on Saccharomyces cerevisiae and Zymomonas mobilis subjected to environmental shocks. Biotechnol Bioeng 1997, 53:71-78.
  • [19]Osman YA, Ingram LO: Mechanism of ethanol inhibition of fermentation in Zymomonas mobilis CP4. J Bacteriol 1985, 164:173-180.
  • [20]Moreau RA, Powell MJ, Fett WF, Whitaker BD: The effect of ethanol and oxygen on the growth of Zymomonas mobilis and the levels of hopanoids and other membrane lipids. Curr Microbiol 1997, 35:124-128.
  • [21]Barbosa MFS, Yomano LP, Ingram LO: Cloning, sequencing and expression of stress genes from the ethanol-producing bacterium Zymomonas mobilis: the groESL operon. Gene 1994, 94:51-57.
  • [22]Landolfo S, Zara G, Zara S, Budroni M, Ciani M, Mannazzu I: Oleic acid and ergosterol supplementation mitigates oxidative stress in wine strains of Saccharomyces cerevisiae. Int J Food Microbiol 2010, 141:229-235.
  • [23]Lucero P, Peñalver E, Moreno E, Lagunas R: Internal trehalose protects endocytosis from inhibition by ethanol in Saccharomyces cerevisiae. Appl Environ Microbiol 2000, 66:4456-4461.
  • [24]Kanagasundaram V, Scopes RK: Cloning, sequence analysis and expression of the structural gene encoding glucose-fructose oxidoreductase from Zymomonas mobilis. J Bacteriol 1992, 174:1439-1447.
  • [25]Charoensuk K, Irie A, Lertwattanasakul N, Sootsuwan K, Thanonkeo P, Yamada M: Physiological importance of cytochrome c peroxidase in ethanologenic thermotolerant Zymomonas mobilis. J Mol Microbiol Biotechnol 2011, 20:70-82.
  • [26]Hallsworth JE, Nomura Y, Iwahara M: Ethanol induced water stress and fungal growth. J Ferment Bioeng 1998, 86:451-456.
  • [27]Chandler M, Stanley GA, Rogers P, Chambers P: A genomic approach to defining the ethanol stress response in the yeast Saccharomyces cerevisiae. Ann Microbiol 2004, 54:427-454.
  • [28]Hu XH, Wang MH, Tan T, Li JR, Yang H, Leach L, Zhang RM, Luo ZW: Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae. Genetics 2007, 175:1479-1487.
  • [29]Yoo B, Lee CM: Thermoprotective effect of sorbitol on proteins during dehydration. J Agric Food Chem 1993, 41:190-192.
  • [30]Thanonkeo P, Thanonkeo S, Charoensuk K, Yamada M: Ethanol production from Jerusalem artichoke (Helianthus tuberosus L.) by Zymomonas mobilis TISTR548. Afr J Biotechnol 2011, 10:10691-10697.
  • [31]Michel GPF, Azoulay T, Starka J: Ethanol effect on the membrane protein pattern of Zymomonas mobilis. Ann Inst Pasteur Microbiol 1985, 136:173-179.
  • [32]Sambrook J, Russell DW: Molecular Cloning: A Laboratory Manual. 3rd edition. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2001.
  • [33]Kuwayama H, Obara S, Morio T, Katoh M, Urashihara H, Tanaka Y: PCR-mediated generation of a gene disruption construct without the use of DNA ligase and plasmid vectors. Nucleic Acids Res 2002, 30:1-5.
  • [34]Ying Z, Ma R, Zhao Z, Zhou Z, Lu W, Chen M: irrE, an exogenous gene from Deinococcus radiodurans, improves the growth of and ethanol production by a Zymomonas mobilis strain under ethanol and acid stresses. J Microbiol Biotechnol 2010, 20:1156-1162.
  • [35]Keeratirakha N: A Comparative Study on Ethanol Production Ability between Zymomonas mobilis TISTR548 and Z. mobilis Δgfo. Khon Kaen: Khon Kaen University, Biotechnology Department; 2011. [Master thesis]
  • [36]Taherzadeh MJ, Eklund R, Gustafsson L, Niklasson C, Liden G: Characterization and fermentation of dilute-acid hydrolyzates from wood. Ind Eng Chem Res 1997, 36:4659-4665.
  • [37]Jiang H, Ren F, Sun J, He L, Li W, Xie Y, Wang Q: Molecular cloning and gene expression analysis of the leptin receptor in the Chinese mitten crab Eriocheir sinensis. Plos One 2010, 5:1-9.
  • [38]Scherz J, Bonn G: Analytical Chemistry of Carbohydrates. New York, NY: Georg Thieme Verlag; 1998.
  • [39]Laopaiboon L, Nuanpeng S, Srinophakun P, Klanrit P, Laopaiboon P: Ethanol production from sweet sorghum juice using very high gravity technology: effects of carbon and nitrogen supplementations. Bioresour Technol 2009, 100:4167-4182.
  文献评价指标  
  下载次数:112次 浏览次数:28次