期刊论文详细信息
BMC Cancer
HPV type-related chromosomal profiles in high-grade cervical intraepithelial neoplasia
Renske DM Steenbergen1  Peter JF Snijders1  Chris JLM Meijer1  Bauke Ylstra1  Mark A van de Wiel2  Wessel N van Wieringen3  Saskia M Wilting1  Mariska Bierkens1 
[1]Department of Pathology, Unit of Molecular Pathology, VU University Medical Center, PO box 7057, 1007 MB Amsterdam, The Netherlands
[2]Epidemiology & Biostatistics, VU University Medical Center, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
[3]Department of Mathematics, VU University, de Boelelaan 1081A, 1081 HV Amsterdam, The Netherlands
关键词: HPV;    High-grade cervical intraepithelial neoplasia;    Chromosomal aberrations;    Cervical cancer;    Array CGH;   
Others  :  1080571
DOI  :  10.1186/1471-2407-12-36
 received in 2011-10-11, accepted in 2012-01-24,  发布年份 2012
PDF
【 摘 要 】

Background

The development of cervical cancer and its high-grade precursor lesions (Cervical Intraepithelial Neoplasia grade 2/3 [CIN2/3]) result from a persistent infection with high-risk human papillomavirus (hrHPV) types and the accumulation of (epi)genetic host cell aberrations. Epidemiological studies have demonstrated variable CIN2/3 and cancer risks between different hrHPV types. Recent genomic profiling studies revealed substantial heterogeneity in the chromosomal aberrations detected in morphologically indistinguishable CIN2/3 suggestive of varying cancer risk. The current study aimed to investigate whether CIN2/3 with different hrHPV types vary with respect to their chromosomal profiles, both in terms of the number of aberrations and chromosomal loci affected.

Methods

Chromosomal profiles were determined of 43 p16INK4a-immunopositive CIN2/3 of women with long-term hrHPV infection (≥ 5 years). Sixteen lesions harboured HPV16, 3 HPV18, 14 HPV31, 1 HPV33, 4 HPV45, 1 HPV51, 2 HPV52 and 2 HPV58.

Results

Unsupervised hierarchical clustering analysis of the chromosomal profiles revealed two major clusters, characterised by either few or multiple chromosomal aberrations, respectively. A majority of 87.5% of lesions with HPV16 were in the cluster with relatively few aberrations, whereas no such unbalanced distribution was seen for lesions harbouring other hrHPV types. Analysis of the two most prevalent types (HPV16 and HPV31) in this data set revealed a three-fold increase in the number of losses in lesions with HPV31 compared to HPV16-positive lesions. In particular, losses at chromosomes 2q, 4p, 4q, 6p, 6q, 8q & 17p and gain at 1p & 1q were significantly more frequent in HPV31-positive lesions (FDR < 0.2).

Conclusions

Chromosomal aberrations in CIN2/3 are at least in part related to the hrHPV type present. The relatively low number of chromosomal aberrations observed in HPV16-positive CIN2/3 suggests that the development of these lesions is less dependent on genetic insult than those caused by other types like HPV31.

【 授权许可】

   
2012 Bierkens et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20141203022008924.pdf 1615KB PDF download
Figure 3. 153KB Image download
Figure 2. 73KB Image download
Figure 1. 129KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]zur Hausen H: Papillomaviruses causing cancer: evasion from host-cell control in early events in carcinogenesis. J Natl Cancer Inst 2000, 92:690-8.
  • [2]Burk RD, Chen Z, Van DK: Human papillomaviruses: genetic basis of carcinogenicity. Public Health Genomics 2009, 12:281-90.
  • [3]A review of human carcinogens In Part B: Biological Agents. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; 2009:100B.
  • [4]Baseman JG, Koutsky LA: The epidemiology of human papillomavirus infections. J Clin Virol 2005, 32(Suppl 1):S16-S24.
  • [5]Snijders PJ, Steenbergen RD, Heideman DA, Meijer CJ: HPV-mediated cervical carcinogenesis: concepts and clinical implications. J Pathol 2006, 208:152-64.
  • [6]Bierkens M, Wilting SM, Van Wieringen WN, van Kemenade FJ, Bleeker MC, Jordanova ES, et al.: Chromosomal profiles of high-grade cervical intraepithelial neoplasia relate to duration of preceding high-risk human papillomavirus infection. Int J Cancer 2011. doi: 10.1002/ijc.26496
  • [7]Laughlin-Drubin ME, Crum CP, Munger K: Human papillomavirus E7 oncoprotein induces KDM6A and KDM6B histone demethylase expression and causes epigenetic reprogramming. Proc Natl Acad Sci USA 2011, 108:2130-5.
  • [8]Lambert AP, Anschau F, Schmitt VM: p16INK4A expression in cervical premalignant and malignant lesions. Exp Mol Pathol 2006, 80:192-6.
  • [9]Queiroz C, Silva TC, Alves VA, Villa LL, Costa MC, Travassos AG, et al.: P16(INK4a) expression as a potential prognostic marker in cervical pre-neoplastic and neoplastic lesions. Pathol Res Pract 2006, 202:77-83.
  • [10]Wentzensen N, von Knebel DM: Biomarkers in cervical cancer screening. Dis Markers 2007, 23:315-30.
  • [11]Winer RL, Kiviat NB, Hughes JP, Adam DE, Lee SK, Kuypers JM, et al.: Development and duration of human papillomavirus lesions, after initial infection. J Infect Dis 2005, 191:731-8.
  • [12]McCredie MR, Sharples KJ, Paul C, Baranyai J, Medley G, Jones RW, et al.: Natural history of cervical neoplasia and risk of invasive cancer in women with cervical intraepithelial neoplasia 3: a retrospective cohort study. Lancet Oncol 2008, 9:425-34.
  • [13]Wisman GB, De JS, Meersma GJ, Helder MN, Hollema H, de Vries EG, et al.: Telomerase in (pre)neoplastic cervical disease. Hum Pathol 2000, 31:1304-12.
  • [14]Wilting SM, van Boerdonk RA, Henken FE, Meijer CJ, Diosdado B, Meijer GA, et al.: Methylation-mediated silencing and tumour suppressive function of hsa-miR-124 in cervical cancer. Mol Cancer 2010, 9:167.
  • [15]Steenbergen RD, Kramer D, Braakhuis BJ, Stern PL, Verheijen RH, Meijer CJ, et al.: TSLC1 gene silencing in cervical cancer cell lines and cervical neoplasia. J Natl Cancer Inst 2004, 96:294-305.
  • [16]Snijders PJ, van Duin M, Walboomers JM, Steenbergen RD, Risse EK, Helmerhorst TJ, et al.: Telomerase activity exclusively in cervical carcinomas and a subset of cervical intraepithelial neoplasia grade III lesions: strong association with elevated messenger RNA levels of its catalytic subunit and high-risk human papillomavirus DNA. Cancer Res 1998, 58:3812-8.
  • [17]Overmeer RM, Henken FE, Snijders PJ, Claassen-Kramer D, Berkhof J, Helmerhorst TJ, et al.: Association between dense CADM1 promoter methylation and reduced protein expression in high-grade CIN and cervical SCC. J Pathol 2008, 215:388-97.
  • [18]Overmeer RM, Henken FE, Bierkens M, Wilting SM, Timmerman I, Meijer CJ, et al.: Repression of MAL tumour suppressor activity by promoter methylation during cervical carcinogenesis. J Pathol 2009, 219:327-36.
  • [19]Yang N, Nijhuis ER, Volders HH, Eijsink JJ, Lendvai A, Zhang B, et al.: Gene promoter methylation patterns throughout the process of cervical carcinogenesis. Cell Oncol 2010, 32:131-43.
  • [20]Hammes LS, Tekmal RR, Naud P, Edelweiss MI, Kirma N, Valente PT, et al.: Up-regulation of VEGF, c-fms and COX-2 expression correlates with severity of cervical cancer precursor (CIN) lesions and invasive disease. Gynecol Oncol 2008, 110:445-51.
  • [21]Wilting SM, Steenbergen RD, Tijssen M, Van Wieringen WN, Helmerhorst TJ, van Kemenade FJ, et al.: Chromosomal signatures of a subset of high-grade premalignant cervical lesions closely resemble invasive carcinomas. Cancer Res 2009, 69:647-55.
  • [22]Berkhof J, Bulkmans NW, Bleeker MC, Bulk S, Snijders PJ, Voorhorst FJ, et al.: Human papillomavirus type-specific 18-month risk of high-grade cervical intraepithelial neoplasia in women with a normal or borderline/mildly dyskaryotic smear. Cancer Epidemiol Biomarkers Prev 2006, 15:1268-73.
  • [23]Bulkmans NW, Berkhof J, Bulk S, Bleeker MC, van Kemenade FJ, Rozendaal L, et al.: High-risk HPV type-specific clearance rates in cervical screening. Br J Cancer 2007, 96:1419-24.
  • [24]Clifford GM, Smith JS, Aguado T, Franceschi S: Comparison of HPV type distribution in high-grade cervical lesions and cervical cancer: a meta-analysis. Br J Cancer 2003, 89:101-5.
  • [25]Lorincz AT, Reid R, Jenson AB, Greenberg MD, Lancaster W, Kurman RJ: Human papillomavirus infection of the cervix: relative risk associations of 15 common anogenital types. Obstet Gynecol 1992, 79:328-37.
  • [26]Wheeler CM, Hunt WC, Joste NE, Key CR, Quint WG, Castle PE: Human papillomavirus genotype distributions: implications for vaccination and cancer screening in the United States. J Natl Cancer Inst 2009, 101:475-87.
  • [27]Sigurdsson K, Taddeo FJ, Benediktsdottir KR, Olafsdottir K, Sigvaldason H, Oddsson K, et al.: HPV genotypes in CIN 2-3 lesions and cervical cancer: a population-based study. Int J Cancer 2007, 121:2682-7.
  • [28]Zuna RE, Allen RA, Moore WE, Mattu R, Dunn ST: Comparison of human papillomavirus genotypes in high-grade squamous intraepithelial lesions and invasive cervical carcinoma: evidence for differences in biologic potential of precursor lesions. Mod Pathol 2004, 17:1314-22.
  • [29]Insinga RP, Liaw KL, Johnson LG, Madeleine MM: A systematic review of the prevalence and attribution of human papillomavirus types among cervical, vaginal, and vulvar precancers and cancers in the United States. Cancer Epidemiol Biomarkers Prev 2008, 17:1611-22.
  • [30]Coutlee F, Ratnam S, Ramanakumar AV, Insinga RR, Bentley J, Escott N, et al.: Distribution of human papillomavirus genotypes in cervical intraepithelial neoplasia and invasive cervical cancer in Canada. J Med Virol 2011, 83:1034-41.
  • [31]Carozzi FM, Tornesello ML, Burroni E, Loquercio G, Carillo G, Angeloni C, et al.: Prevalence of human papillomavirus types in high-grade cervical intraepithelial neoplasia and cancer in Italy. Cancer Epidemiol Biomarkers Prev 2010, 19:2389-400.
  • [32]de Villiers EM, Fauquet C, Broker TR, Bernard HU, zur HH: Classification of papillomaviruses. Virology 2004, 324:17-27.
  • [33]Bulkmans NW, Berkhof J, Rozendaal L, van Kemenade FJ, Boeke AJ, Bulk S, et al.: Human papillomavirus DNA testing for the detection of cervical intraepithelial neoplasia grade 3 and cancer: 5-year follow-up of a randomised controlled implementation trial. Lancet 2007, 370:1764-72.
  • [34]van den Brule AJ, Pol R, Fransen-Daalmeijer N, Schouls LM, Meijer CJ, Snijders PJ: GP5+/6+ PCR followed by reverse line blot analysis enables rapid and high-throughput identification of human papillomavirus genotypes. J Clin Microbiol 2002, 40:779-87.
  • [35]van de Wiel MA, Picard F, Van Wieringen WN, Ylstra B: Preprocessing and downstream analysis of microarray DNA copy number profiles. Brief Bioinform 2011, 12:10-21.
  • [36]Vinokurova S, Wentzensen N, Kraus I, Klaes R, Driesch C, Melsheimer P, et al.: Type-dependent integration frequency of human papillomavirus genomes in cervical lesions. Cancer Res 2008, 68:307-13.
  • [37]de Sanjose S, Quint WG, Alemany L, Geraets DT, Klaustermeier JE, Lloveras B, et al.: Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol 2010, 11:1048-56.
  • [38]Sideri M, Cristoforoni P, Casadio C, Boveri S, Igidbashian S, Schmitt M, et al.: Distribution of human papillomavirus genotypes in invasive cervical cancer in Italy: a representative, single institution case series. Vaccine 2009, 27(Suppl 1):A30-A33.
  • [39]Sideri M, Igidbashian S, Boveri S, Radice D, Casadio C, Spolti N, et al.: Age distribution of HPV genotypes in cervical intraepithelial neoplasia. Gynecol Oncol 2011, 121:510-3.
  • [40]Heselmeyer K, Macville M, Schrock E, Blegen H, Hellstrom AC, Shah K, et al.: Advanced-stage cervical carcinomas are defined by a recurrent pattern of chromosomal aberrations revealing high genetic instability and a consistent gain of chromosome arm 3q. Genes Chromosomes Cancer 1997, 19:233-40.
  • [41]Allen DG, White DJ, Hutchins AM, Scurry JP, Tabrizi SN, Garland SM, et al.: Progressive genetic aberrations detected by comparative genomic hybridization in squamous cell cervical cancer. Br J Cancer 2000, 83:1659-63.
  • [42]Kirchhoff M, Rose H, Petersen BL, Maahr J, Gerdes T, Lundsteen C, et al.: Comparative genomic hybridization reveals a recurrent pattern of chromosomal aberrations in severe dysplasia/carcinoma in situ of the cervix and in advanced-stage cervical carcinoma. Genes Chromosomes Cancer 1999, 24:144-50.
  • [43]Rao PH, rias-Pulido H, Lu XY, Harris CP, Vargas H, Zhang FF, et al.: Chromosomal amplifications, 3q gain and deletions of 2q33-q37 are the frequent genetic changes in cervical carcinoma. BMC Cancer 2004, 4:5. BioMed Central Full Text
  • [44]Wilting SM, Snijders PJ, Meijer GA, Ylstra B, van den Ijssel PR, Snijders AM, et al.: Increased gene copy numbers at chromosome 20q are frequent in both squamous cell carcinomas and adenocarcinomas of the cervix. J Pathol 2006, 209:220-30.
  • [45]Matthews CP, Shera KA, McDougall JK: Genomic changes and HPV type in cervical carcinoma. Proc Soc Exp Biol Med 2000, 223:316-21.
  • [46]Hidalgo A, Baudis M, Petersen I, Arreola H, Pina P, Vazquez-Ortiz G, et al.: Microarray comparative genomic hybridization detection of chromosomal imbalances in uterine cervix carcinoma. BMC Cancer 2005, 5:77. BioMed Central Full Text
  • [47]Heselmeyer-Haddad K, Sommerfeld K, White NM, Chaudhri N, Morrison LE, Palanisamy N, et al.: Genomic amplification of the human telomerase gene (TERC) in pap smears predicts the development of cervical cancer. Am J Pathol 2005, 166:1229-38.
  • [48]Henken FE, Banerjee NS, Snijders PJ, Meijer CJ, De-Castro AJ, Rosl F, et al.: PIK3CA-mediated PI3-kinase signalling is essential for HPV-induced transformation in vitr. Mol Cancer 2011, 10:71. BioMed Central Full Text
  • [49]Korzeniewski N, Spardy N, Duensing A, Duensing S: Genomic instability and cancer: lessons learned from human papillomaviruses. Cancer Lett 2011, 305:113-22.
  • [50]Bester AC, Roniger M, Oren YS, Im MM, Sarni D, Chaoat M, et al.: Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 2011, 145:435-46.
  • [51]Mullokandov MR, Kholodilov NG, Atkin NB, Burk RD, Johnson AB, Klinger HP: Genomic alterations in cervical carcinoma: losses of chromosome heterozygosity and human papilloma virus tumor status. Cancer Res 1996, 56:197-205.
  • [52]Mitra AB, Murty VV, Li RG, Pratap M, Luthra UK, Chaganti RS: Allelotype analysis of cervical carcinoma. Cancer Res 1994, 54:4481-7.
  • [53]Kersemaekers AM, van d Kenter GG, Fleuren GJ: Genetic alterations during the progression of squamous cell carcinomas of the uterine cervix. Genes Chromosomes Cancer 1999, 26:346-54.
  • [54]Rader JS, Gerhard DS, O'Sullivan MJ, Li Y, Li L, Liapis H, et al.: Cervical intraepithelial neoplasia III shows frequent allelic loss in 3p and 6p. Genes Chromosomes Cancer 1998, 22:57-65.
  • [55]Chatterjee A, Pulido HA, Koul S, Beleno N, Perilla A, Posso H, et al.: Mapping the sites of putative tumor suppressor genes at 6p25 and 6p21.3 in cervical carcinoma: occurrence of allelic deletions in precancerous lesions. Cancer Res 2001, 61:2119-23.
  • [56]Vermeulen CF, Jordanova ES, Zomerdijk-Nooijen YA, Ter Haar NT, Peters AA, Fleuren GJ: Frequent HLA class I loss is an early event in cervical carcinogenesis. Hum Immunol 2005, 66:1167-73.
  • [57]Sheu BC, Chiou SH, Chang WC, Chow SN, Lin HH, Chen RJ, et al.: Integration of high-risk human papillomavirus DNA correlates with HLA genotype aberration and reduced HLA class I molecule expression in human cervical carcinoma. Clin Immunol 2005, 115:295-301.
  • [58]Koopman LA, van der Slik AR, Giphart MJ, Fleuren GJ: Human leukocyte antigen class I gene mutations in cervical cancer. J Natl Cancer Inst 1999, 91:1669-77.
  • [59]Wang JF, Wang CX, Wang LS, Zhang J, Yang XJ, Liu M, et al.: Association of human papillomavirus type 16 E7 and HLA class I antigen expression in cervical premalignant and malignant lesions. Int J Biol Markers 2007, 22:124-31.
  • [60]Cromme FV, Meijer CJ, Snijders PJ, Uyterlinde A, Kenemans P, Helmerhorst T, et al.: Analysis of MHC class I and II expression in relation to presence of HPV genotypes in premalignant and malignant cervical lesions. Br J Cancer 1993, 67:1372-80.
  • [61]Ashrafi GH, Haghshenas M, Marchetti B, Campo MS: E5 protein of human papillomavirus 16 downregulates HLA class I and interacts with the heavy chain via its first hydrophobic domain. Int J Cancer 2006, 119:2105-12.
  • [62]Li H, Zhan T, Li C, Liu M, Wang QK: Repression of MHC class I transcription by HPV16E7 through interaction with a putative RXRbeta motif and NF-kappaB cytoplasmic sequestration. Biochem Biophys Res Commun 2009, 388:383-8.
  • [63]Ku WH, Liu IL, Yen MS, Chang Chien CC, Yue CT, Ma YY, et al.: Genomic deletion and p53 inactivation in cervical carcinoma. Int J Cancer 1997, 72:270-6.
  • [64]Fu L, Van DK, Chen Z, Ristriani T, Masson M, Trave G, et al.: Degradation of p53 by human Alphapapillomavirus E6 proteins shows a stronger correlation with phylogeny than oncogenicity. PLoS ONE 2010., 5doi:10.1371/journal.pone.0012816
  • [65]Scotto L, Narayan G, Nandula SV, rias-Pulido H, Subramaniyam S, Schneider A, et al.: Identification of copy number gain and overexpressed genes on chromosome arm 20q by an integrative genomic approach in cervical cancer: potential role in progression. Genes Chromosomes Cancer 2008, 47:755-65.
  文献评价指标  
  下载次数:13次 浏览次数:5次