期刊论文详细信息
Aquatic Biosystems
Proteomics with a pinch of salt: A cyanobacterial perspective
Catherine A Biggs1  Phillip C Wright1  Jagroop Pandhal1 
[1]Biological and Environmental Systems Group, Department of Chemical and Process Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
Others  :  795270
DOI  :  10.1186/1746-1448-4-1
 received in 2008-01-15, accepted in 2008-04-15,  发布年份 2008
PDF
【 摘 要 】

Cyanobacteria are ancient life forms and have adapted to a variety of extreme environments, including high salinity. Biochemical, physiological and genetic studies have contributed to uncovering their underlying survival mechanisms, and as recent studies demonstrate, proteomics has the potential to increase our overall understanding further. To date, most salt-related cyanobacterial proteomic studies have utilised gel electrophoresis with the model organism Synechocystis sp. PCC6803. Moreover, focus has been on 2–4% w/v NaCl concentrations within different cellular compartments. Under these conditions, Synechocystis sp. PCC6803 was found to respond and adapt to salt stress through synthesis of general and specific stress proteins, altering the protein composition of extracellular layers, and re-directing control of complex central intermediary pathways. Post-transcriptional control was also predicted through non-correlating transcript level data and identification of protein isoforms.

In this paper, we also review technical developments with emphasis on improving the quality and quantity of proteomic data and overcoming the detrimental effects of salt on sample preparation and analysis. Developments in gel-free methods include protein and peptide fractionation workflows, which can increase coverage of the proteome (20% in Synechocystis sp. PCC6803). Quantitative techniques have also improved in accuracy, resulting in confidence in quantitation approaching or even surpassing that seen in transcriptomic techniques (better than 1.5-fold in differential expression). Furthermore, in vivo metabolic labelling and de novo protein sequencing software have improved the ability to apply proteomics to unsequenced environmental isolates. The example used in this review is a cyanobacterium isolated from a Saharan salt lake.

【 授权许可】

   
2008 Pandhal et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705084200545.pdf 571KB PDF download
Figure 4. 86KB Image download
Figure 3. 87KB Image download
Figure 2. 74KB Image download
Figure 1. 139KB Image download
Figure 1. 139KB Image download
【 图 表 】

Figure 1.

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Boyer JS: Plant productivity and environment. Science 1982, 218 (4571):443-448.
  • [2]Nelson DE, Shen B, Bohnert HJ: Salinity tolerance mechanisms, models and the metabolic engineering of complex traits: Principles and Methods. In Genet Eng (N Y). Volume 20. Edited by Setlow J. New York , Plenum Press; 1998::153-176.
  • [3]Hart BT, Lake PS, Webb JA, Grace MR: Ecological risk to aquatic systems from salinity increases. Aust J Bot 2003, 51:689-702.
  • [4]Bryant DA: The cyanobacterial photosynthetic apparatus: comparisons to those of higher plants and photosynthetic bacteria. In Photosynthetic picoplankton. Volume 214. Edited by Li TPWKW. Can. Bull. Fish. Aquat. Sci.; 1986::423-500.
  • [5]Joset F, Jeanjean R, Hagemann M: Dynamics of response of cyanobacteria to salt stress: deciphering the molecular events. Physiol Plant 1996, 96:738-744.
  • [6]Stal L: Cyanobacteria. Algae and cyanobacteria in extreme environments 2007, 11:659-680.
  • [7]Reed RH, Stewart WDP: The responses of cyanobacteria to salt stress. In Biochemistry of the algae and cyanobacteria. Edited by L.J. Rogers JRG. Oxford , Oxford Science Publisher; 1988:217-231.
  • [8]James KR, Cant B, Ryan T: Responses of fresh water biota to rising salinity levels and implications for saline water management: A review. Aust J Bot 2003, 51(6):703-713.
  • [9]Galinski EA: Osmoadaptation in bacteria. Adv Microb Physiol 1995, 37:272-328.
  • [10]Yancey PH: Water stress, osmolytes and proteins. Amer Zool 2001, 41(4):699-709.
  • [11]Jeruzalmi D, Steitz TA: Use of organic cosmotropic solutes to crystallize flexible proteins: application to T7 RNA polymerase and its complex with the inhibitor T7 lysozyme. J Mol Biol 1997, 274(5):748-756.
  • [12]Brown CR, Hong-Brown LQ, Biwersi J, Verkman AS, Welch WJ: Chemical chaperones correct the mutant phenotype of the delta F508 cystic fibrosis transmembrane conductance regulator protein. Cell Stress Chaperones 1996, 1(2):117-125.
  • [13]Roberts MF: Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Systems 2005, 1:5.
  • [14]Desmarais D, Jablonski PE, Fedarko NS, Roberts MF: 2-Sulfotrehalose, a novel osmolyte in haloalkaliphilic archaea. J Bacteriol 1997, 179(10):3146-3153.
  • [15]Gabbay-Azaria R, Tel-Or E: Mechanisms of salt tolerance in cyanobacteria. In Plant Responses to the Environment. Edited by Gresshoff PM. Boca Raton , CRC Press; 1993:692-698.
  • [16]Hagemann M, Zuther E: Selection and characterization of mutants of the cyanobacterium Synechocystis sp. PCC 6803 unable to tolerate high salt concentrations. Arch Microbiol 1992, 158(6):429-434.
  • [17]JVIRGEL [http://www.jvirgel.de/] webcite
  • [18]Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S: Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions (supplement). DNA Res 1996, 3(3):185-209.
  • [19]Grigorieva G, Shestakov SV: Transformation in the cyanobacterium Synechocystis sp. PCC6803. FEMS Microbiol Lett 1982, 13:367-370.
  • [20]Burja AM, Dhamwichukorn S, Wright PC: Cyanobacterial postgenomic research and systems biology. Trends Biotechnol 2003, 21(11):504-511.
  • [21]Ferjani A, Mustardy L, Sulpice R, Marin K, Suzuki I, Hagemann M, Murata N: Glucosylglycerol, a compatible solute, sustains cell division under salt stress. Plant Physiol 2003, 131(4):1628-1637.
  • [22]Hagemann M, Fulda S, Schubert H: DNA, RNA, and protein synthesis in the cyanobacterium Synechocystis sp. PCC 6803 adapted to different salt concentrations. Curr Microbiol 1994, 28(4):201-207.
  • [23]Hagemann M, Jeanjean R, Fulda S, Havaux M, Joset F, Erdmann N: Flavodoxin accumulation contributes to enhanced cyclic electron flow around photosystem I in salt-stressed cells of Synechocystis sp. strain PCC 6803. Physiol Plant 1999, 105(4):670-678.
  • [24]Jeanjean R, Matthijs HCP, Onana B, Havaux M, Joset F: Exposure of the cyanobacterium Synechocystis PCC6803 to salt stress induces concerted changes in respiration and photosynthesis . Plant Cell Physiol 1993, 34:1073-1079.
  • [25]Marin K, Huckauf J, Fulda S, Hagemann M: Salt-dependent expression of glucosylglycerol-phosphate synthase, involved in osmolyte synthesis in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 2002, 184(11):2870-2877.
  • [26]Marin K, Suzuki I, Yamaguchi K, Ribbeck K, Yamamoto H, Kanesaki Y, Hagemann M, Murata N: Identification of histidine kinases that act as sensors in the perception of salt stress in Synechocystis sp. PCC 6803. PNAS 2003, 100(15):9061-9066.
  • [27]Reed RH, Borowitzka LJ, Mackay MA, Chudek JA, Foster R, Warr SRC, Moore DJ, Stewart WDP: Organic solute accumulation in osmotically stressed cyanobacteria. FEMS Microbiol Lett 1986, 39(1-2):51-56.
  • [28]Schubert H, Fulda S, Hagemann M: Effects of adaptation to different salt concentrations on photosynthesis and pigmentation of the cyanobacterium Synechocystis sp. PCC 6803. J Plant Physiol 1993, 142:291–295.
  • [29]Singh SC, Sinha RP, Hader DP: Role of lipids and fatty acids in stress tolerance in cyanobacteria. Acta Protozoologica 2002, 41:297-308.
  • [30]Tang D, Shi S, Li D, Hu C, Liu Y: Physiological and biochemical responses of Scytonema javanicum (cyanobacterium) to salt stress. Journal of Arid Environments 2007, 71(3):312-320.
  • [31]Elanskaya IV, Karandashova IV, Bogachev AV, M. H: Functional analysis of the Na+/H+ antiporter encoding genes of the cyanobacterium Synechocystis PCC 6803. Biochemistry (Mosc) 2002, 67(4):432-440.
  • [32]Shoumskaya MA, Paithoonrangsarid K, Kanesaki Y, Los DA, Zinchenko VV, Tanticharoen M, Suzuki I, Murata N: Identical Hik-Rre systems are involved in perception and transduction of salt signals and hyperosmotic signals but regulate the expression of individual genes to different extents in Synechocystis. J Biol Chem 2005, 280(22):21531-21538.
  • [33]Vinnemeier J, Kunert A, Hagemann M: Transcriptional analysis of the isiAB operon in salt-stressed cells of the cyanobacterium Synechocystis sp. PCC6803. FEMS Microbiol Lett 1998, 169:323-330.
  • [34]Bohnert HJ, Ayoubi P, Borchert C, Bressan RA, Burnap RL, Cushman JC, Cushman MA, Deyholos M, Galbraith DW, Hasegawa PM, Jenks M, Kawasaki S, Koiwa H, Kore-eda S, Lee BH, Michalowski CB, Misawa E, Nomura M, Ozturk M, Postier B, Prade R, Song CP, Tanaka Y, Wang H, Zhu JK: A genomics approach towards salt stress tolerance. Plant Physiol Biochem 2001, 39:295-311.
  • [35]Kanesaki Y, Suzuki I, Allakhverdiev SI, Mikami K, Murata N: Salt Stress and hyperosmotic stress regulate the expression of different sets of genes in Synechocystis sp. PCC 6803. Biochem Biophys Res Commun 2002, 290(1):339-348.
  • [36]Marin K, Kanesaki Y, Los DA, Murata N, Suzuki I, Hagemann M: Gene expression profiling reflects physiological processes in salt acclimation of Synechocystis sp. strain PCC 6803. Plant Physiol 2004, 136(2):3290-3300.
  • [37]Miao X, Wu Q, Wu G, Zhao N: Sucrose accumulation in salt-stressed cells of agp gene deletion-mutant in cyanobacterium Synechocystis sp PCC 6803. FEMS Microbiol Lett 2003, 218(1):71-77.
  • [38]Fulda S, Huang F, Nilsson F, Hagemann M, Norling B: Proteomics of Synechocystis sp. strain PCC 6803: Identification of periplasmic proteins cells grown at low and high salt concentrations. Eur J Biochem 2000, 267:5900-5907.
  • [39]Fulda S, Mikkat S, Huang F, Huckauf J, Marin K, Norling B, Hagemann M: Proteome analysis of salt stress response in the cyanobacterium Synechocystis sp. strain PCC 6803. Proteomics 2006, 6(9):2733-2745.
  • [40]Hagemann M, Techel D, Rensing L: Comparison of salt- and heat-induced alterations of protein synthesis in the cyanobacterium Synechocystis sp. PCC 6803. Arch Microbiol 1991, 155(6):587-592.
  • [41]Fulda S, Mikkat S, Schroder W, Hagemann M: Isolation of salt-induced periplasmic proteins from Synechocystis sp. strain PCC 6803. Arch Microbiol 1999, 171(3):214-217.
  • [42]Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R, Williams KL, Humphery-Smith I: Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 1995, 16(7):1090-1094.
  • [43]Chalmers MJ, Gaskell SJ: Advances in mass spectrometry for proteome analysis. Curr Opin Biotechnol 2000, 11(4):384-390.
  • [44]Gygi SP, Rochon Y, Franza BR, Aebersold R: Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 1999, 19(3):1720-1730.
  • [45]Lu P, Vogel C, Wang R, Yao X, Marcotte EM: Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat Biotechnol 2007, 25(1):117-124.
  • [46]Wand AJ: Dynamic activation of protein function: a view emerging from NMR spectroscopy. Nat Struct Biol 2001, 8(11):926-931.
  • [47]Kaneko T, Nakamura Y, Wolk CP, Kuritz T, Sasamoto S, Watanabe A, Iriguchi M, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kohara M, Matsumoto M, Matsuno A, Muraki A, Nakazaki N, Shimpo S, Sugimoto M, Takazawa M, Yamada M, Yasuda M, Tabata S: Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 2001, 8(5):205-13; 227-53.
  • [48]Klose J: Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 1975, 26(3):231-243.
  • [49]O'Farrell PH: High resolution two-dimensional electrophoresis of proteins. J Biol Chem 1975, 250(10):4007-4021.
  • [50]Choe LH, Lee KH: A comparison of three commercially available isoelectric focusing units for proteome analysis: The Multiphor, the IPGphor and the Protean IEF cell. Electrophoresis 2000, 21(5):993-1000.
  • [51]Packer NH, Pawlak A, Kett WC, Gooley AA, Redmond JW, Williams KL: Proteome analysis of glycoforms: a review of strategies for the microcharacterisation of glycoproteins separated by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis 1997, 18(3-4):452-460.
  • [52]Robertson ES, Nicholson AW: Phosphorylation of Escherichia coli translation initiation factors by the bacteriophage T7 protein kinase. Biochemistry (Mosc) 1992, 31(20):4822-4827.
  • [53]Westermeier R, naven T: Proteomics in Practice. 3rd edition. Europe , Amersham Biosciences; 2002.
  • [54]Simon WJ, Hall JJ, Suzuki I, Murata N, Slabas AR: Proteomic study of the soluble proteins from the unicellular cyanobacterium Synechocystis sp. PCC6803 using automated matrix-assisted laser desorption/ionization-time of flight peptide mass fingerprinting. Proteomics 2002, 2(12):1735-1742.
  • [55]Bjellqvist B, Ek K, Righetti PG, Gianazza E, Gorg A, Westermeier R, Postel W: Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. J Biochem Biophys Methods 1982, 6(4):317-339.
  • [56]Lopez MF: Better approaches to finding the needle in a haystack: Optimizing proteome analysis through automation. Electrophoresis 2000, 21(6):1082-1093.
  • [57]Libby K, Engelstein M: Automating and simplifying in-gel digestion, purification and MALDI spotting. Am Biotechnol Lab 2003., 14
  • [58]Barry RC, Alsaker BL, Robison-Cox JF, Dratz EA: Quantitative evaluation of sample application methods for semipreparative separations of basic proteins by two-dimensional gel electrophoresis. Electrophoresis 2003, 24(19-20):3390-3404.
  • [59]Link AJ: Multi-dimensional peptide separtations in proteomics. Trends Biotechnol 2002, 20:S8- S13.
  • [60]Molloy MP: Two-dimensional electrophoresis of membrane proteins using immobilized pH gradients. Anal Biochem 2000, 280(1):1-10.
  • [61]Rabilloud T: Solubilization of proteins in 2-D electrophoresis: An outline. Methods Mol Biol 1999, 112:9-19.
  • [62]Berggren K, Steinberg TH, Lauber WM, Carroll JA, Lopez MF, Chernokalskaya E, Zieske L, Diwu Z, Haugland RP, Patton WF: A luminescent ruthenium complex for ultrasensitive detection of proteins immobilized on membrane supports. Anal Biochem 1999, 276(2):129-143.
  • [63]Lopez MF, Berggren K, Chernokalskaya E, Lazarev A, Robinson M, Patton WF: A comparison of silver stain and SYPRO Ruby Protein Gel Stain with respect to protein detection in two-dimensional gels and identification by peptide mass profiling. Electrophoresis 2000, 21(17):3673-3683.
  • [64]Shevchenko A, Wilm M, Vorm O, Mann M: Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 1996, 68(5):850-858.
  • [65]Unlu M, Morgan ME, Minden JS: Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 1997, 18(11):2071-2077.
  • [66]Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M: Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 2002, 1(5):376-386.
  • [67]Krijgsveld J, Ketting RF, Mahmoudi T, Johansen J, Artal-Sanz M, Verrijzer CP, Plasterk RH, Heck AJ: Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics. Nat Biotechnol 2003, 21(8):927-931.
  • [68]Snijders AP, de Vos MG, de Koning B, Wright PC: A fast method for quantitative proteomics based on a combination between two-dimensional electrophoresis and 15N-metabolic labelling. Electrophoresis 2005, 26(16):3191-3199.
  • [69]Opiteck GJ, Jorgenson JW: Two-dimensional SEC/RPLC coupled to mass spectrometry for the analysis of peptides. Anal Chem 1997, 69(13):2283-2291.
  • [70]Swanson RV, Glazer AN: Separation of phycobiliprotein subunits by reverse-phase high-pressure liquid chromatography. Anal Biochem 1990, 188(2):295-299.
  • [71]Peng J, Elias JE, Thoreen CC, Licklider LJ, Gygi SP: Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J Proteome Res 2003, 2(1):43-50.
  • [72]Chen J, Balgley BM, DeVoe DL, Lee CS: Capillary isoelectric focusing-based multidimensional concentration/separation platform for proteome analysis. Anal Chem 2003, 75(13):3145-3152.
  • [73]Xiao Z, Conrads TP, Lucas DA, Janini GM, Schaefer CF, Buetow KH, Issaq HJ, Veenstra TD: Direct ampholyte-free liquid-phase isoelectric peptide focusing: application to the human serum proteome. Electrophoresis 2004, 25(1):128-133.
  • [74]Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM: Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246(4926):64-71.
  • [75]Karas M, Hillenkamp F: Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 1988, 60(20):2299-2301.
  • [76]Aebersold R, Mann M: Mass spectrometry-based proteomics. Nature 2003, 422(6928):198-207.
  • [77]Blueggel M, Chamrad D, Meyer HE: Bioinformatics in proteomics. Curr Pharm Biotechnol 2004, 5(1):79-88.
  • [78]Huang H, Hu ZZ, Arighi CN, Wu CH: Integration of bioinformatics resources for functional analysis of gene expression and proteomic data. Front Biosci 2007, 12:5071-5088.
  • [79]Cho CW, Lee SH, Choi J, Park SJ, Ha DJ, Kim HJ, Kim CW: Improvement of the two-dimensional gel electrophoresis analysis for the proteome study of Halobacterium salinarum. Proteomics 2003, 3(12):2325-2329.
  • [80]Jiang L, He L, Fountoulakis M: Comparison of protein precipitation methods for sample preparation prior to proteomic analysis. J Chromatogr A 2004, 1023(2):317-320.
  • [81]Yuan X, Desiderio DM: Proteomics analysis of human cerebrospinal fluid. J Chromatogr B Biomed Appl 2005, 815(1-2):179-189.
  • [82]Damerval C, DeVienne D, Zivy M, Thiellement H: Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling protein. Electrophoresis 1986, 7:53-54.
  • [83]Wang Y, Sun J, Chitnis PR: Proteomic study of the peripheral proteins from thylakoid membranes of the cyanobacterium Synechocystis sp. PCC 6803. Electrophoresis 2000, 21(9):1746-1754.
  • [84]Gorg A: Advances in 2D gel techniques. Trends Biotechnol 2000, 18:3-6.
  • [85]Berkelman T, Stenstedt T: 2D Electrophoresis: Principles and methods. Uppsala, Sweden , Amersham Pharmacia Biotech; 2001:17-25.
  • [86]Heppelmann C, Benson LM, Bergen HR: A simple method to remove contaminating salt from IPG strips prior to IEF. Electrophoresis 2007, 28(21):3988-3991.
  • [87]Lion N, Gellon JO, Jensen H, Girault HH: On-chip protein sample desalting and preparation for direct coupling with electrospray ionization mass spectrometry. J Chromatogr A 2003, 1003:11-19.
  • [88]Naldrett MJ, Zeidler R, Wilson KE, Kocourek A: Concentration and desalting of peptide and protein samples with a newly developed C18 membrane in a microspin column format. J Biomol Tech 2005, 16(4):423-428.
  • [89]Annesley TM: Ion suppression in mass spectrometry. Clin Chem 2003, 49(7):1041-1044.
  • [90]Jackson AU, Talaty N, Cooks RG, Van Berkel GJ: Salt tolerance of desorption electrospray ionization (DESI). J Am Soc Mass Spectrom 2007, 18(12):2218-2225.
  • [91]Nakamura Y, Kaneko T, Tabata S: CyanoBase, the genome database for Synechocystis sp. strain PCC6803: status for the year 2000. Nucl Acids Res 2000, 28(1):72-73.
  • [92]Norling B, Zak E, Andersson B, Pakrasi H: 2D-isolation of pure plasma and thylakoid membranes from the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett 1998, 436(2):189-192.
  • [93]Huang F, Parmryd I, Nilsson F, Persson AL, Pakrasi HB, Andersson B, Norling B: Proteomics of Synechocystis sp. Strain PCC 6803: Identification of Plasma Membrane Proteins. Mol Cell Proteomics 2002, 1(12):956-966.
  • [94]Pisareva T, Shumskaya M, Maddalo G, Ilag L, Norling B: Proteomics of Synechocystis sp. PCC 6803. Identification of novel integral plasma membrane proteins. FEBS Journal 2007, 274(3):791-804.
  • [95]Kashino Y, Harayama T, Pakrasi HB, Satoh K: Preparation of membrane proteins for analysis by two-dimensional gel electrophoresis. J Chromatogr B Biomed Appl 2007, 849(1-2):282-292.
  • [96]Herranen M, Battchikova N, Zhang P, Graf A, Sirpio S, Paakkarinen V, Aro EM: Towards functional proteomics of membrane protein complexes in Synechocystis sp. PCC 6803. Plant Physiol 2004, 134(1):470-481.
  • [97]Rippka R, Deruelles J, Waterbury JB: Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 1979, 111(1):1-61.
  • [98]Neu HC, LA H: The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem 1965, 240:3685–3692.
  • [99]Hagemann M, Erdmann N: Activation and pathway of glucosylglycerol synthesis in the cyanobacterium Synechocystis sp. PCC 6803 . Microbiology 1994, 140:1427–1431.
  • [100]Wittig I, Braun HP, Schagger H: Blue native PAGE. Nat Protocols 2006, 1(1):418-428.
  • [101]Camacho-Carvajal MM, Wollscheid B, Aebersold R, Steimle V, Schamel WWA: Two-dimensional Blue native/SDS gel electrophoresis of multi-protein complexes from whole cellular lysates: a proteomics approach. Mol Cell Proteomics 2004, 3(2):176-182.
  • [102]Huang F, Fulda S, Hagemann M, Norling B: Proteomic screening of salt-stress-induced changes in plasma membranes of Synechocystis sp. strain PCC 6803. Proteomics 2006, 6(3):910-920.
  • [103]Wessel D, Flugge UI: A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 1984, 138(1):141-143.
  • [104]Tolle J, Michel KP, Kruip J, Kahmann U, Preisfeld A, Pistorius EK: Localization and function of the IdiA homologue Slr1295 in the cyanobacterium Synechocystis sp. strain PCC 6803. Microbiology 2002, 148(Pt 10):3293-3305.
  • [105]Wilkinson MJ, Northcote DH: Plasma membrane ultrastructure during plant protoplast plasmolysis, isolation and wall regeneration: a freeze-fracture study. J Cell Sci 1980, 42(1):401-415.
  • [106]Kroll D, Meierhoff K, Bechtold N, Kinoshita M, Westphal S, Vothknecht UC, Soll J, Westhoff P: VIPP1, a nuclear gene of Arabidopsis thaliana essential for thylakoid membrane formation. Proc Natl Acad Sci U S A 2001, 98(7):4238-4242.
  • [107]Gardy JL, Laird MR, Chen F, Rey S, Walsh CJ, Ester M, Brinkman FS: PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 2005, 21(5):617-623.
  • [108]Juncker AS, Willenbrock H, Von Heijne G, Brunak S, Nielsen H, Krogh A: Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci 2003, 12(8):1652-1662.
  • [109]Sudhir PR, Pogoryelov D, Kovacs L, Garab G, Murthy SD: The effects of salt stress on photosynthetic electron transport and thylakoid membrane proteins in the cyanobacterium Spirulina platensis. J Biochem Mol Biol 2005, 38(4):481-485.
  • [110]Burnette WN: "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 1981, 112(2):195-203.
  • [111]Chen Y, Drysdale J: Detection of iron binding proteins by a blotting technique. Anal Biochem 1993, 212(1):47-49.
  • [112]Wirth PJ, Romano A: Staining methods in gel electrophoresis, including the use of multiple detection methods. J Chromatogr A 1995, 698:123-143.
  • [113]Gygi SP, Corthals GL, Zhang Y, Rochon Y, Aebersold R: Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci U S A 2000, 97(17):9390-9395.
  • [114]Kashino Y: Separation methods in the analysis of protein membrane complexes. J Chromatogr B Analyt Technol Biomed Life Sci 2003, 797(1-2):191-216.
  • [115]Kato Y, Nakamura K, Kitamura T, Tsuda T, Hasegawa M, Sasaki H: Effect of chromatographic conditions on resolution in high-performance ion-exchange chromatography of proteins on macroporous anion-exchange resin. J Chromatogr A 2004, 1031(1-2):101-105.
  • [116]Chan KC, Lucas DA, Hise D, Schaefer CF, Xiao Z, Janini GM, Buetow KH, Issaq HJ, Veenstra TD, Conrads TP: Analysis of the human serum proteome. Clinical Proteomics 2004, 1:101-226.
  • [117]Ostrowski LE, Blackburn K, Radde KM, Moyer MB, Schlatzer DM, Moseley A, Boucher RC: A proteomic analysis of human cilia: identification of novel components. Mol Cell Proteomics 2002, 1(6):451-465.
  • [118]Gan CS, Reardon KF, Wright PC: Comparison of protein and peptide prefractionation methods for the shotgun proteomic analysis of Synechocystis sp. PCC 6803. Proteomics 2005, 5(9):2468-2478.
  • [119]Rabilloud T: Membrane proteins ride shotgun. Nat Biotechnol 2003, 21(5):508-510.
  • [120]Santoni V, Molloy M, Rabilloud T: Membrane proteins and proteomics: un amour impossible? Electrophoresis 2000, 21(6):1054-1070.
  • [121]Barrios-Llerena ME, Chong PK, Gan CS, Snijders AP, Reardon KF, Wright PC: Shotgun proteomics of cyanobacteria--applications of experimental and data-mining techniques. Brief Funct Genomic Proteomic 2006, 5(2):121-132.
  • [122]Yao X, Freas A, Ramirez J, Demirev PA, Fenselau C: Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal Chem 2001, 73(13):2836-2842.
  • [123]Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R: Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 1999, 17(10):994-999.
  • [124]Cagney G, Emili A: Mass-coded abundance tagging for protein identification and relative abundance determination in proteomic experiments. The Proteomics Protocols Handbook 2005, 193-206.
  • [125]Kirkpatrick DS, Gerber SA, Gygi SP: The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications. Methods 2005, 35(3):265-273.
  • [126]Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ: Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 2004, 3(12):1154-1169.
  • [127]Pandhal J, Wright PC, Biggs CA: A quantitative proteomic analysis of light adaptation in a globally significant marine cyanobacterium Prochlorococcus marinus MED4. J Proteome Res 2007, 6(3):996-1005.
  • [128]Chong PK, Gan CS, Pham TK, Wright PC: Isobaric tags for relative and absolute quantitation (iTRAQ) reproducibility: Implication of multiple injections. J Proteome Res 2006, 5(5):1232-1240.
  • [129]Gan CS, Chong PK, Pham TK, Wright PC: Technical, experimental, and biological variations in isobaric tags for relative and absolute quantitation (iTRAQ). J Proteome Res 2007, 6(2):821-827.
  • [130]Stensjo K, Ow SY, Barrios-Llerena ME, Lindblad P, Wright PC: An iTRAQ-based quantitative analysis to elaborate the proteomic response of Nostoc sp. PCC 7120 under N2 fixing conditions. J Proteome Res 2007, 6(2):621-635.
  • [131]Oda Y, Huang K, Cross FR, Cowburn D, Chait BT: Accurate quantitation of protein expression and site-specific phosphorylation. Proc Natl Acad Sci U S A 1999, 96(12):6591-6596.
  • [132]Choe LH, Franck KAZ, Lee KH: A comparison of the consistency of proteome quantitation using two-dimensional electrophoresis and shotgun isobaric tagging in Escherichia coli cells. Electrophoresis 2005, 26(12):2437-2449.
  • [133]Wu WW, Wang G, Baek SJ, Shen RF: Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D Gel- or LC-MALDI TOF/TOF. J Proteome Res 2006, 5(3):651-658.
  • [134]Liska AJ, Shevchenko A: Expanding the organismal scope of proteomics: cross-species protein identification by mass spectrometry and its implications. Proteomics 2003, 3(1):19-28.
  • [135]Shevchenko A, Sunyaev S, Loboda A, Shevchenko A, Bork P, Ens W, Standing KG: Charting the proteomes of organisms with unsequenced genomes by MALDI-quadrupole time-of-flight mass spectrometry and BLAST homology searching. Anal Chem 2001, 73(9):1917-1926.
  • [136]Habermann B, Oegema J, Sunyaev S, Shevchenko A: The power and the limitations of cross-species protein identification by mass spectrometry-driven sequence similarity searches. Mol Cell Proteomics 2004, 3(3):238-249.
  • [137]Lester PJ, Hubbard SJ: Comparative bioinformatic analysis of complete proteomes and protein parameters for cross-species identification in proteomics. Proteomics 2002, 2(10):1392-1405.
  • [138]Liska AJ, Shevchenko A: Combining mass spectrometry with database interrogation strategies in proteomics. TrAC, Trends Anal Chem 2003, 22(5):291-298.
  • [139]MS BLAST [http://www.dove.embl-heidelberg.de/Blast2/msblast.html] webcite
  • [140]Han Y, Ma B, Zhang K: SPIDER: software for protein identification from sequence tags with de novo sequencing error. Proc IEEE Comput Syst Bioinform Conf 2004, 206-215.
  • [141]Ma B, Zhang K, Hendrie C, Liang C, Li M, Doherty-Kirby A, Lajoie G: PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom 2003, 17(20):2337-2342.
  • [142]Colinge J, Masselot A, Giron M, Dessingy T, Magnin J: OLAV: towards high-throughput tandem mass spectrometry data identification. Proteomics 2003, 3(8):1454-1463.
  • [143]Carr S, Aebersold R, Baldwin M, Burlingame A, Clauser K, Nesvizhskii A: The need for guidelines in publication of peptide and protein identification data: Working group on publication guidelines for peptide and protein identification data. Mol Cell Proteomics 2004, 3(6):531-533.
  • [144]Pandhal J, Snijders APL, Biggs C, Wright PC: A cross-species quantitative proteomic study of salt adaptation in a halotolerant environmental isolate using 15N metabolic labelling . Proteomics 2008., In Press
  • [145]Gao X, Ren Z, Zhao Y, Zhang H: Overexpression of SOD2 Increases Salt Tolerance of Arabidopsis. Plant Physiol 2003, 133(4):1873-1881.
  • [146]Cioni P, Bramanti E, Strambini GB: Effects of sucrose on the internal dynamics of azurin. Biophys J 2005, 88(6):4213-4222.
  • [147]Grossmann J, Fischer B, Baerenfaller K, Owiti J, Buhmann JM, Gruissem W, Baginsky S: A workflow to increase the detection rate of proteins from unsequenced organisms in high-throughput proteomics experiments. Proteomics 2007, 7(23):4245-4254.
  • [148]Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K: Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 2004, 135(3):1697-1709.
  • [149]Ashhuby BA: Biofouling studies on reverse osmosis desalination of hypersaline waters PhD Thesis. In Chemical and Process Engineering. Volume PhD. Sheffield , University of Sheffield; 2007::221.
  文献评价指标  
  下载次数:15次 浏览次数:17次