| BMC Cancer | |
| Preclinical evaluation of Sunitinib as a single agent in the prophylactic setting in a mouse model of bone metastases | |
| Christian Schem3  Dirk Bauerschlag1  Sascha Bender3  Ann-Christin Lorenzen3  Daniel Loermann3  Sigrid Hamann3  Frank Rösel3  Holger Kalthoff2  Claus C Glüer4  Walter Jonat3  Sanjay Tiwari4  | |
| [1] Department of Gynecology, University Hospital Aachen, Aachen, Germany | |
| [2] Division of Molecular Oncology, Institute for Experimental Cancer Research, University Hospital Schleswig-Holstein , Campus Kiel, Germany | |
| [3] Department of Gynecology, University Hospital Schleswig-Holstein, Campus Kiel, Germany | |
| [4] Molecular Imaging North Competence Center, Department of Diagnostic Radiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany | |
| 关键词: Imaging; Breast cancer; Bone metastases; Sunitinib; | |
| Others : 1079958 DOI : 10.1186/1471-2407-13-32 |
|
| received in 2012-08-01, accepted in 2013-01-15, 发布年份 2013 | |
PDF
|
|
【 摘 要 】
Background
A substantial number of breast cancer patients are identified as being at high risk of developing metastatic disease. With increasing number of targeted therapeutics entering clinical trials, chronic administration of these agents may be a feasible approach for the prevention of metastases within this subgroup of patients. In this preclinical study we examined whether Sunitinib, a multi-tyrosine kinase inhibitor which has anti-angiogenic and anti-resorptive activity, is effective in the prevention of bone metastases.
Method
Sunitinib was administered daily with the first dose commencing prior to tumor cell inoculation. Intracardiac injection was performed with MDA-MB23 bone-seeking cells, which were stably transfected with DsRed2. In vivo plain radiography and fluorescent imaging (Berthold NightOwl) was used in the analysis of bone metastases. Histomorphometry was used for the quantification of TRAP+ cells from bone sections and immunohistochemistry was performed using an antibody reactive to CD34 for quantification of microvessel density.
Results
Preventive dosing administration of Sunitinib does not inhibit colonization of tumor cells to bone or reduce the size of osteolytic lesions. There was a decrease in the number of TRAP+ cells with Sunitinib treatment but this did not reach significance. Sunitinib inhibited tumor growth as determined by imaging of fluorescent tumor area. Immunohistochemical analyses of microvessel density revealed a concomitant decrease in the number of tumor blood vessels.
Conclusions
The findings suggest that Sunitinib can be used as a therapeutic agent for the treatment of bone metastases but as a single agent it is not effective in terms of prevention. Therefore a combination approach with other cytostatic drugs should be pursued.
【 授权许可】
2013 Schem et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20141202214640569.pdf | 2530KB | ||
| Figure 4. | 86KB | Image | |
| Figure 3. | 54KB | Image | |
| Figure 2. | 101KB | Image | |
| Figure 1. | 69KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Diel IJ, Kaufmann M, Costa SD, Holle R, von Minckwitz G, Solomayer EF, Kaul S, Bastert G: Micrometastatic breast cancer cells in bone marrow at primary surgery: prognostic value in comparison with nodal status. J Natl Cancer Inst 1996, 88(22):1652-1658.
- [2]Kostenuik PJ, Singh G, Suyama KL, Orr FW: Stimulation of bone resorption results in a selective increase in the growth rate of spontaneously metastatic Walker 256 cancer cells in bone. Clin Exp Metastasis 1992, 10(6):411-418.
- [3]Sasaki A, Boyce BF, Story B, Wright KR, Chapman M, Boyce R, Mundy GR, Yoneda T: Bisphosphonate risedronate reduces metastatic human breast cancer burden in bone in nude mice. Cancer Res 1995, 55(16):3551-3557.
- [4]Michigami T, Hiraga T, Williams PJ, Niewolna M, Nishimura R, Mundy GR, Yoneda T: The effect of the bisphosphonate ibandronate on breast cancer metastasis to visceral organs. Breast Cancer Res Treat 2002, 75(3):249-258.
- [5]Chung LW, Baseman A, Assikis V, Zhau HE: Molecular insights into prostate cancer progression: the missing link of tumor microenvironment. J Urol 2005, 173(1):10-20.
- [6]Schneider A, Kalikin LM, Mattos AC, Keller ET, Allen MJ, Pienta KJ, McCauley LK: Bone turnover mediates preferential localization of prostate cancer in the skeleton. Endocrinology 2005, 146(4):1727-1736.
- [7]van der Pluijm G, Que I, Sijmons B, Buijs JT, Lowik CW, Wetterwald A, Thalmann GN, Papapoulos SE, Cecchini MG: Interference with the microenvironmental support impairs the de novo formation of bone metastases in vivo. Cancer Res 2005, 65(17):7682-7690.
- [8]Aft R, Naughton M, Trinkaus K, Watson M, Ylagan L, Chavez-MacGregor M, Zhai J, Kuo S, Shannon W, Diemer K, et al.: Effect of zoledronic acid on disseminated tumour cells in women with locally advanced breast cancer: an open label, randomised, phase 2 trial. Lancet Oncol 2010, 11(5):421-428.
- [9]Rack B, Juckstock J, Genss EM, Schoberth A, Schindlbeck C, Strobl B, Heinrigs M, Rammel G, Zwingers T, Sommer H, et al.: Effect of zoledronate on persisting isolated tumour cells in patients with early breast cancer. Anticancer Res 2010, 30(5):1807-1813.
- [10]Eidtmann H, de Boer R, Bundred N, Llombart-Cussac A, Davidson N, Neven P, von Minckwitz G, Miller J, Schenk N, Coleman R: Efficacy of zoledronic acid in postmenopausal women with early breast cancer receiving adjuvant letrozole: 36-month results of the ZO-FAST Study. Ann Oncol 2010, 21(11):2188-2194.
- [11]Coleman R, Woodward E, Brown J, Cameron D, Bell R, Dodwell D, Keane M, Gil M, Davies C, Burkinshaw R, et al.: Safety of zoledronic acid and incidence of osteonecrosis of the jaw (ONJ) during adjuvant therapy in a randomised phase III trial (AZURE: BIG 01–04) for women with stage II/III breast cancer. Breast Cancer Res Treat 2011, 127(2):429-438.
- [12]Bauerle T, Merz M, Komljenovic D, Zwick S, Semmler W: Drug-induced vessel remodeling in bone metastases as assessed by dynamic contrast enhanced magnetic resonance imaging and vessel size imaging: a longitudinal in vivo study. Clin Cancer Res 2010, 16(12):3215-3225.
- [13]Murray LJ, Abrams TJ, Long KR, Ngai TJ, Olson LM, Hong W, Keast PK, Brassard JA, O'Farrell AM, Cherrington JM, et al.: SU11248 inhibits tumor growth and CSF-1R-dependent osteolysis in an experimental breast cancer bone metastasis model. Clin Exp Metastasis 2003, 20(8):757-766.
- [14]Peyruchaud O, Serre CM, NicAmhlaoibh R, Fournier P, Clezardin P: Angiostatin inhibits bone metastasis formation in nude mice through a direct anti-osteoclastic activity. J Biol Chem 2003, 278(46):45826-45832.
- [15]Zwolak P, Jasinski P, Terai K, Gallus NJ, Ericson ME, Clohisy DR, Dudek AZ: Addition of receptor tyrosine kinase inhibitor to radiation increases tumour control in an orthotopic murine model of breast cancer metastasis in bone. Eur J Cancer 2008, 44(16):2506-2517.
- [16]Bauerle T, Hilbig H, Bartling S, Kiessling F, Kersten A, Schmitt-Graff A, Kauczor HU, Delorme S, Berger MR: Bevacizumab inhibits breast cancer-induced osteolysis, surrounding soft tissue metastasis, and angiogenesis in rats as visualized by VCT and MRI. Neoplasia 2008, 10(5):511-520.
- [17]Engebraaten O, Trikha M, Juell S, Garman-Vik S, Fodstad O: Inhibition of in vivo tumour growth by the blocking of host alpha(v)beta3 and alphaII(b)beta3 integrins. Anticancer Res 2009, 29(1):131-137.
- [18]Weber MH, Lee J, Orr FW: The effect of Neovastat (AE-941) on an experimental metastatic bone tumor model. Int J Oncol 2002, 20(2):299-303.
- [19]Henriksen K, Karsdal M, Delaisse JM, Engsig MT: RANKL and vascular endothelial growth factor (VEGF) induce osteoclast chemotaxis through an ERK1/2-dependent mechanism. J Biol Chem 2003, 278(49):48745-48753.
- [20]Matsumoto Y, Tanaka K, Hirata G, Hanada M, Matsuda S, Shuto T, Iwamoto Y: Possible involvement of the vascular endothelial growth factor-Flt-1-focal adhesion kinase pathway in chemotaxis and the cell proliferation of osteoclast precursor cells in arthritic joints. J Immunol 2002, 168(11):5824-5831.
- [21]Mayr-Wohlfart U, Waltenberger J, Hausser H, Kessler S, Gunther KP, Dehio C, Puhl W, Brenner RE: Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts. Bone 2002, 30(3):472-477.
- [22]Midy V, Plouet J: Vasculotropin/vascular endothelial growth factor induces differentiation in cultured osteoblasts. Biochem Biophys Res Commun 1994, 199(1):380-386.
- [23]Niida S, Kaku M, Amano H, Yoshida H, Kataoka H, Nishikawa S, Tanne K, Maeda N, Nishikawa S, Kodama H: Vascular endothelial growth factor can substitute for macrophage colony-stimulating factor in the support of osteoclastic bone resorption. J Exp Med 1999, 190(2):293-298.
- [24]Street J, Bao M, deGuzman L, Bunting S, Peale FV Jr, Ferrara N, Steinmetz H, Hoeffel J, Cleland JL, Daugherty A, et al.: Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci U S A 2002, 99(15):9656-9661.
- [25]Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Oudard S, Negrier S, Szczylik C, Pili R, Bjarnason GA, et al.: Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J Clin Oncol 2009, 27(22):3584-3590.
- [26]Mendel DB, Laird AD, Xin X, Louie SG, Christensen JG, Li G, Schreck RE, Abrams TJ, Ngai TJ, Lee LB, et al.: In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res 2003, 9(1):327-337.
- [27]Demetri GD, van Oosterom AT, Garrett CR, Blackstein ME, Shah MH, Verweij J, McArthur G, Judson IR, Heinrich MC, Morgan JA, et al.: Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 2006, 368(9544):1329-1338.
- [28]Faivre S, Delbaldo C, Vera K, Robert C, Lozahic S, Lassau N, Bello C, Deprimo S, Brega N, Massimini G, et al.: Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol 2006, 24(1):25-35.
- [29]Barrios CH, Liu MC, Lee SC, Vanlemmens L, Ferrero JM, Tabei T, Pivot X, Iwata H, Aogi K, Lugo-Quintana R, et al.: Phase III randomized trial of sunitinib versus capecitabine in patients with previously treated HER2-negative advanced breast cancer. Breast Cancer Res Treat 2010, 121(1):121-131.
- [30]Bergh J, Bondarenko IM, Lichinitser MR, Liljegren A, Greil R, Voytko NL, Makhson AN, Cortes J, Lortholary A, Bischoff J, et al.: First-line treatment of advanced breast cancer with sunitinib in combination with docetaxel versus docetaxel alone: results of a prospective, randomized phase III study. J Clin Oncol 2012, 30(9):921-929.
- [31]van de Wijngaert FP, Burger EH: Demonstration of tartrate-resistant acid phosphatase in un-decalcified, glycolmethacrylate-embedded mouse bone: a possible marker for (pre)osteoclast identification. J Histochem Cytochem 1986, 34(10):1317-1323.
- [32]Tiwari S, Schem C, Lorenzen AC, Kayser O, Wiese C, Graeff C, Pena J, Marshall RP, Heller M, Kalthoff H, et al.: Application of ex vivo micro-computed tomography for assessment of in vivo fluorescence and plain radiographic imaging for monitoring bone metastases and osteolytic lesions. J Bone Miner Metab 2011. in press
- [33]Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS: Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 2009, 15(3):232-239.
- [34]Chung AS, Kowanetz M, Wu X, Zhuang G, Ngu H, Finkle D, Komuves L, Peale F, Ferrara N: Differential drug class-specific metastatic effects following treatment with a panel of angiogenesis inhibitors. J Pathol 2012, 227(4):404-416.
- [35]Welti JC, Powles T, Foo S, Gourlaouen M, Preece N, Foster J, Frentzas S, Bird D, Sharpe K, van Weverwijk A, et al.: Contrasting effects of sunitinib within in vivo models of metastasis. Angiogenesis 2012, 15(4):623-641.
- [36]Kozlow W, Guise TA: Breast cancer metastasis to bone: mechanisms of osteolysis and implications for therapy. J Mammary Gland Biol Neoplasia 2005, 10(2):169-180.
- [37]Yoneda T, Hiraga T: Crosstalk between cancer cells and bone microenvironment in bone metastasis. Biochem Biophys Res Commun 2005, 328(3):679-687.
- [38]Pratap J, Akech J, Wixted JJ, Szabo G, Hussain S, McGee-Lawrence ME, Li X, Bedard K, Dhillon RJ, van Wijnen AJ, et al.: The histone deacetylase inhibitor, vorinostat, reduces tumor growth at the metastatic bone site and associated osteolysis, but promotes normal bone loss. Mol Cancer Ther 2010, 9(12):3210-3220.
- [39]Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, et al.: A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 2008, 26(1):127-132.
- [40]Ebos JM, Lee CR, Christensen JG, Mutsaers AJ, Kerbel RS: Multiple circulating proangiogenic factors induced by sunitinib malate are tumor-independent and correlate with antitumor efficacy. Proc Natl Acad Sci U S A 2007, 104(43):17069-17074.
- [41]Asou Y, Rittling SR, Yoshitake H, Tsuji K, Shinomiya K, Nifuji A, Denhardt DT, Noda M: Osteopontin facilitates angiogenesis, accumulation of osteoclasts, and resorption in ectopic bone. Endocrinology 2001, 142(3):1325-1332.
- [42]Ishijima M, Rittling SR, Yamashita T, Tsuji K, Kurosawa H, Nifuji A, Denhardt DT, Noda M: Enhancement of osteoclastic bone resorption and suppression of osteoblastic bone formation in response to reduced mechanical stress do not occur in the absence of osteopontin. J Exp Med 2001, 193(3):399-404.
- [43]Yoshitake H, Rittling SR, Denhardt DT, Noda M: Osteopontin-deficient mice are resistant to ovariectomy-induced bone resorption. Proc Natl Acad Sci U S A 1999, 96(14):8156-8160.
- [44]Hirbe AC, Uluckan O, Morgan EA, Eagleton MC, Prior JL, Piwnica-Worms D, Trinkaus K, Apicelli A, Weilbaecher K: Granulocyte colony-stimulating factor enhances bone tumor growth in mice in an osteoclast-dependent manner. Blood 2007, 109(8):3424-3431.
- [45]Takahashi T, Wada T, Mori M, Kokai Y, Ishii S: Overexpression of the granulocyte colony-stimulating factor gene leads to osteoporosis in mice. Lab Invest 1996, 74(4):827-834.
- [46]Takamatsu Y, Simmons PJ, Moore RJ, Morris HA, To LB, Levesque JP: Osteoclast-mediated bone resorption is stimulated during short-term administration of granulocyte colony-stimulating factor but is not responsible for hematopoietic progenitor cell mobilization. Blood 1998, 92(9):3465-3473.
- [47]Mackey JR, Kerbel RS, Gelmon KA, McLeod DM, Chia SK, Rayson D, Verma S, Collins LL, Paterson AH, Robidoux A, et al.: Controlling angiogenesis in breast cancer: a systematic review of anti-angiogenic trials. Cancer Treat Rev 2012, 38(6):673-688.
- [48]Perez EA, Spano JP: Current and emerging targeted therapies for metastatic breast cancer. Cancer 2012, 118(12):3014-3025.
- [49]Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F, Inoue M, Bergers G, Hanahan D, Casanovas O: Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 2009, 15(3):220-231.
- [50]Casanovas O, Hicklin DJ, Bergers G, Hanahan D: Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 2005, 8(4):299-309.
- [51]Keizman D, Ish-Shalom M, Pili R, Hammers H, Eisenberger MA, Sinibaldi V, Boursi B, Maimon N, Gottfried M, Hayat H, et al.: Bisphosphonates combined with sunitinib may improve the response rate, progression free survival and overall survival of patients with bone metastases from renal cell carcinoma. Eur J Cancer 2012, 48(7):1031-1037.
- [52]Baselga J, Campone M, Piccart M, Burris HA 3rd, Rugo HS, Sahmoud T, Noguchi S, Gnant M, Pritchard KI, Lebrun F, et al.: Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Eng J Med 2012, 366(6):520-529.
- [53]Lipton A, Steger GG, Figueroa J, Alvarado C, Solal-Celigny P, Body JJ, de Boer R, Berardi R, Gascon P, Tonkin KS, et al.: Randomized active-controlled phase II study of denosumab efficacy and safety in patients with breast cancer-related bone metastases. J Clin Oncol 2007, 25(28):4431-4437.
- [54]Steger GG, Bartsch R: Denosumab for the treatment of bone metastases in breast cancer: evidence and opinion. Therapeutic advances in medical oncology 2011, 3(5):233-243.
- [55]Stopeck AT, Lipton A, Body JJ, Steger GG, Tonkin K, de Boer RH, Lichinitser M, Fujiwara Y, Yardley DA, Viniegra M, et al.: Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol 2010, 28(35):5132-5139.
- [56]Wu X, Pang L, Lei W, Lu W, Li J, Li Z, Frassica FJ, Chen X, Wan M, Cao X: Inhibition of Sca-1-positive skeletal stem cell recruitment by alendronate blunts the anabolic effects of parathyroid hormone on bone remodeling. Cell Stem Cell 2010, 7(5):571-580.
PDF