期刊论文详细信息
Biotechnology for Biofuels
Conversion of biomass-derived oligosaccharides into lipids
Zhiwei Gong2  Qian Wang1  Hongwei Shen1  Lei Wang1  Haibo Xie1  Zongbao K Zhao1 
[1] Dalian National Laboratory for Clean Energy and Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China
[2] University of the Chinese Academy of Sciences, Beijing 100049, PR China
关键词: Simultaneous saccharification and lipid production;    Oligosaccharides;    Oleaginous yeast;    Microbial lipids;    Cryptococcus curvatus;    Biodiesel;   
Others  :  793870
DOI  :  10.1186/1754-6834-7-13
 received in 2013-10-01, accepted in 2014-01-15,  发布年份 2014
PDF
【 摘 要 】

Background

Oligocelluloses and oligoxyloses are partially hydrolyzed products from lignocellulosic biomass hydrolysis. Biomass hydrolysates usually contain monosaccharides as well as various amounts of oligosaccharides. To utilize biomass hydrolysates more efficiently, it is important to identify microorganisms capable of converting biomass-derived oligosaccharides into biofuels or biochemicals.

Results

We have demonstrated that the oleaginous yeast Cryptococcus curvatus can utilize either oligocelluloses or oligoxyloses as sole carbon sources for microbial lipid production. When oligocelluloses were used, lipid content and lipid coefficient were 35.9% and 0.20 g/g consumed sugar, respectively. When oligoxyloses were used, lipid coefficient was 0.17 g/g consumed sugar. Ion chromatography analysis showed oligocelluloses with a degree of polymerization from 2 to 9 were assimilated. Our data suggested that these oligosaccharides were transported into cells and then hydrolyzed by cytoplasmic enzymes. Further analysis indicated that these enzymes were inducible by oligocelluloses. Lipid production on cellulose by C. curvatus using the simultaneous saccharification and lipid production process in the absence of cellobiase achieved essentially identical results to that in the presence of cellobiase, suggesting that oligocelluloses generated in situ were utilized with high efficiency. This study has provided inspiring information for oligosaccharides utilization, which should facilitate biorefinery based on lignocellulosic biomass.

Conclusions

C. curvatus can directly utilize biomass-derived oligosaccharides. Oligocelluloses are transported into the cells and then hydrolyzed by cytoplasmic enzymes. A simultaneous saccharification and lipid production process can be conducted without oligocelluloses accumulation in the absence of cellobiase by C. curvatus, which could reduce the enzyme costs.

【 授权许可】

   
2014 Gong et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705060235976.pdf 1330KB PDF download
Figure 7. 100KB Image download
Figure 6. 35KB Image download
Figure 5. 72KB Image download
Figure 4. 49KB Image download
Figure 3. 54KB Image download
Figure 2. 43KB Image download
Figure 1. 82KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD: Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 2007, 315:804-807.
  • [2]Jin MJ, Gunawan C, Uppugundla N, Balan V, Dale BE: A novel integrated biological process for cellulosic ethanol production featuring high ethanol productivity, enzyme recycling and yeast cells reuse. Energy Environ Sci 2012, 5(5):7168-7175.
  • [3]Lau MW, Dale BE: Cellulosic ethanol production from AFEX-treated corn stover using Saccharomyces cerevisiae 424A (LNH-ST). Proc Natl Acad Sci USA 2009, 106(5):1368-1373.
  • [4]Fujii T, Yu G, Matsushika A, Kurita A, Yano S, Murakami K, Sawayama S: Ethanol production from xylo-oligosaccharides by xylose-fermenting Saccharomyces cerevisiae expressing β-xylosidase. Biosci Biotechnol Biochem 2011, 75(6):1140-1146.
  • [5]Peng XW, Chen HZ: Hemicellulose sugar recovery from steam-exploded wheat straw for microbial oil production. Process Biochem 2012, 47(2):209-215.
  • [6]Duff SJB, Murray WD: Bioconversion of forest products industry waste cellulosics to fuel ethanol: A review. Bioresour Technol 1996, 55(1):1-33.
  • [7]Zhao J, Xia LM: Simultaneous saccharification and fermentation of alkaline-pretreated corn stover to ethanol using a recombinant yeast strain. Fuel Process Technol 2009, 90(10):1193-1197.
  • [8]Moldes AB, Alonso JL, Parajo JC: Strategies to improve the bioconversion of processed wood into lactic acid by simultaneous saccharification and fermentation. J Chem Technol Biotechnol 2001, 76(3):279-284.
  • [9]Yanez R, Moldes AB, Alonso JL, Parajo JC: Production of D (−)-lactic acid from cellulose by simultaneous saccharification and fermentation using Lactobacillus coryniformis subsp torquens. Biotechnol Lett 2003, 25(14):1161-1164.
  • [10]Lynd LR, Laser MS, Brandsby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J, Wyman CE: How biotech can transform biofuels. Nat Biotechnol 2008, 26(2):169-172.
  • [11]Machida M, Ohtsuki I, Fukui S, Yamashita I: Nucleotide-sequences of Saccharomycopsis fibuligera genes for extracellular beta-glucosidases as expressed in Saccharomyces cerevisiae. Appl Environ Microbiol 1988, 54(12):3147-3155.
  • [12]Murai T, Ueda M, Kawaguchi T, Arai M, Tanaka A: Assimilation of cellooligosaccharides by a cell surface-engineered yeast expressing beta-glucosidase and carboxymethylcellulase from Aspergillus aculeatus. Appl Environ Microbiol 1998, 64(12):4857-4861.
  • [13]Katahira S, Mizuike A, Fukuda H, Kondo A: Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Appl Microbiol Biotechnol 2006, 72(6):1136-1143.
  • [14]Zhang YHP, Lynd LR: Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation. Proc Natl Acad Sci USA 2005, 102(20):7321-7325.
  • [15]Galazka JM, Tian CG, Beeson WT, Martinez B, Glass NL, Cate JHD: Cellodextrin transport in yeast for improved biofuel production. Science 2010, 330:84-86.
  • [16]Shin HD, Yoon SH, Wu J, Rutter C, Kim SW, Chen RR: High-yield production of meso-2,3-butanediol from cellodextrin by engineered E. coli biocatalysts. Bioresour Technol 2012, 118:367-373.
  • [17]Okano K, Zhang Q, Yoshida S, Tanaka T, Ogino C, Fukuda H, Kondo A: D-lactic acid production from cellooligosaccharides and β-glucan using L-LDH gene-deficient and endoglucanase-secreting Lactobacillus plantarum. Appl Microbiol Biotechnol 2009, 85(3):643-650.
  • [18]Adsul M, Khire J, Bastawde K, Gokhale D: Production of lactic acid from cellobiose and cellotriose by Lactobacillus delbrueckii mutant Uc-3. Appl Environ Microbiol 2007, 73(15):5055-5057.
  • [19]Ratledge C, Wynn JP: The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 2002, 51(1):1-51.
  • [20]Papanikolaou S, Aggelis G: Lipids of oleaginous yeasts. Part II: technology and potential applications. Eur J Lipid Sci Technol 2011, 113(8):1052-1073.
  • [21]Zikou E, Chatzifragkou A, Koutinas AA, Papanikolaou S: Evaluating glucose and xylose as cosubstrates for lipid accumulation and gamma-linolenic acid biosynthesis of Thamnidium elegans. J Appl Microbiol 2013, 114(4):1020-1032.
  • [22]Xu JY, Du W, Zhao XB, Zhang GL, Liu DH: Microbial oil production from various carbon sources and its use for biodiesel preparation. Biofuels Bioprod Bioref 2013, 7(1):65-77.
  • [23]Yu XC, Zheng YB, Dorgan KM, Chen SL: Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresour Technol 2011, 102(10):6134-6140.
  • [24]Economou CN, Aggelis G, Pavlou S, Vayenas DV: Single cell oil production from rice hulls hydrolysate. Bioresour Technol 2011, 102(20):9737-9742.
  • [25]Tsigie YA, Wang CY, Truong CT, Ju YH: Lipid production from Yarrowia lipolytica Po1g grown in sugarcane bagasse hydrolysate. Bioresour Technol 2011, 102(19):9216-9222.
  • [26]Ruan ZH, Zanotti M, Zhong Y, Liao W, Ducey C, Liu Y: Co-hydrolysis of lignocellulosic biomass for microbial lipid accumulation. Biotechnol Bioeng 2013, 110(4):1039-1049.
  • [27]Zhao X, Kong X, Hua Y, Feng B, Zhao ZK: Medium optimization for lipid production through co-fermentation of glucose and xylose by the oleaginous yeast Lipomyces starkeyi. Eur J Lipid Sci Technol 2008, 110(5):405-412.
  • [28]Liang YN, Tang TY, Umagiliyage AL, Siddaramu T, McCarroll M, Choudhary R: Utilization of sorghum bagasse hydrolysates for producing microbial lipids. Appl Energy 2012, 91(1):451-458.
  • [29]Gong Z, Shen H, Wang Q, Yang X, Xie H, Zhao ZK: Efficient conversion of biomass into lipids by using the simultaneous saccharification and enhanced lipid production process. Biotechnol Biofuels 2013, 6:36. BioMed Central Full Text
  • [30]Hu C, Wu S, Wang Q, Jin G, Shen H, Zhao ZK: Simultaneous utilization of glucose and xylose for lipid production by Trichosporon cutaneum. Biotechnol Biofuels 2011, 4:25. BioMed Central Full Text
  • [31]Fakas S, Papanikolaou S, Batsos A, Galiotou-Panayotou M, Mallouchos A, Aggelis G: Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass Bioenergy 2009, 33(4):573-580.
  • [32]Katahira S, Fujita Y, Mizuike A, Fukuda H, Kondo A: Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Appl Environ Microbiol 2004, 70(9):5407-5414.
  • [33]Dashtban M, Qin WS: Overexpression of an exotic thermotolerant beta-glucosidase in Trichoderma reesei and its significant increase in cellulolytic activity and saccharification of barley straw. Microb Cell Fact 2012, 11:63. BioMed Central Full Text
  • [34]Liu B, Zhao ZK: Biodiesel production by direct methanolysis of oleaginous microbial biomass. J Chem Technol Biotechnol 2007, 82(8):775-780.
  • [35]Zhang Y-HP, Lynd LR: Cellodextrin preparation by mixed-acid hydrolysis and chromatographic separation. Anal Biochem 2003, 322(2):225-232.
  • [36]Adney B, Baker J: Measurement of Cellulase Activities. NREL Analytical Procedure LAP-006. National Renewable Energy Laboratory: Golden, CO; 1996.
  • [37]Ghose TK: Measurement of cellulase activities. Pure Appl Chem 1987, 59(2):257-268.
  • [38]Meesters PAEP, Huijberts GNM, Eggink G: High cell density cultivation of the lipid accumulating yeast Cryptococcus curvatus using glycerol as a carbon source. Appl Microbiol Biotechnol 1996, 45(5):575-579.
  • [39]Ng IS, Li CW, Chan SP, Chir JL, Chen PT, Tong CG, Yu SM, Ho THD: High-level production of a thermoacidophilic beta-glucosidase from Penicillium citrinum YS40-5 by solid-state fermentation with rice bran. Bioresour Technol 2010, 101(4):1310-1317.
  • [40]Singhania RR, Sukumaran RK, Rajasree KP, Mathew A, Gottumukkala L, Pandey A: Properties of a major beta-glucosidase-BGL1 from Aspergillus niger NII-08121 expressed differentially in response to carbon sources. Process Biochem 2011, 46(7):1521-1524.
  • [41]Mahajan PM, Desai KM, Lele SS: Production of cell membrane-bound alpha- and beta-glucosidase by Lactobacillus acidophilus. Food Bioprocess Technol 2012, 5(2):706-718.
  • [42]Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F: Colorimetric method for determination of sugars and related substances. Anal Chem 1956, 28(3):350-356.
  • [43]Pokusaeva K, O’Connell-Motherway M, Zomer A, MacSharry J, Fitzgerald GF, van Sinderen D: Cellodextrin utilization by Bifidobacterium breve UCC2003. Appl Environ Microbiol 2011, 77(5):1681-1690.
  • [44]Huang L, Forsberg CW: Cellulose digestion and cellulase regulation and distribution in Fibrobacter succinogenes subsp succinogenes S85. Appl Environ Microbiol 1990, 56(5):1221-1228.
  • [45]Updegraf DM: Semimicro determination of cellulose in biological materials. Anal Biochem 1969, 32(3):420-424.
  • [46]Gong Z, Wang Q, Shen H, Hu C, Jin G, Zhao ZK: Co-fermentation of cellobiose and xylose by Lipomyces starkeyi for lipid production. Bioresour Technol 2012, 117:20-24.
  文献评价指标  
  下载次数:73次 浏览次数:14次