期刊论文详细信息
BMC Bioinformatics
A flexible statistical model for alignment of label-free proteomics data – incorporating ion mobility and product ion information
Ashlee M Benjamin3  J Will Thompson3  Erik J Soderblom3  Scott J Geromanos4  Ricardo Henao3  Virginia B Kraus2  M Arthur Moseley3  Joseph E Lucas1 
[1] Quintiles, Durham, North Carolina, USA
[2] Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
[3] Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, North Carolina, USA
[4] Waters Corporation, Milford, Massachusetts, USA
关键词: Product ions;    Matching;    Data alignment;    Ion mobility;    Proteomics;   
Others  :  1087674
DOI  :  10.1186/1471-2105-14-364
 received in 2013-05-30, accepted in 2013-12-06,  发布年份 2013
PDF
【 摘 要 】

Background

The goal of many proteomics experiments is to determine the abundance of proteins in biological samples, and the variation thereof in various physiological conditions. High-throughput quantitative proteomics, specifically label-free LC-MS/MS, allows rapid measurement of thousands of proteins, enabling large-scale studies of various biological systems. Prior to analyzing these information-rich datasets, raw data must undergo several computational processing steps. We present a method to address one of the essential steps in proteomics data processing - the matching of peptide measurements across samples.

Results

We describe a novel method for label-free proteomics data alignment with the ability to incorporate previously unused aspects of the data, particularly ion mobility drift times and product ion information. We compare the results of our alignment method to PEPPeR and OpenMS, and compare alignment accuracy achieved by different versions of our method utilizing various data characteristics. Our method results in increased match recall rates and similar or improved mismatch rates compared to PEPPeR and OpenMS feature-based alignment. We also show that the inclusion of drift time and product ion information results in higher recall rates and more confident matches, without increases in error rates.

Conclusions

Based on the results presented here, we argue that the incorporation of ion mobility drift time and product ion information are worthy pursuits. Alignment methods should be flexible enough to utilize all available data, particularly with recent advancements in experimental separation methods.

【 授权许可】

   
2013 Benjamin et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150117030951696.pdf 2448KB PDF download
Figure 5. 54KB Image download
Figure 4. 88KB Image download
Figure 3. 93KB Image download
Figure 2. 64KB Image download
Figure 2. 61KB Image download
【 图 表 】

Figure 2.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Gillet LC, Navarro P, Tate S, Röst H, Selevsek N, Reiter L, Bonner R, Aebersold R: Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomic 2012, 11(6):O111.016717.
  • [2]Geromanos SJ, Vissers JP, Silva JC, Dorschel CA, Li GZ, Gorenstein MV, Bateman RH, Langridge JI: The detection, correlation, and comparison of peptide precursor and product ions from data independent LC-MS with data dependent LC-MS/MS. Proteomics 2009, 9:1683-1695.
  • [3]Dowsey AW, English JA, Lisacek F, Morris JS, Yang GZ, Dunn MJ: Image analysis tools and emerging algorithms for expression proteomics. Proteomics 2010, 10(23):4226-4257.
  • [4]Zhang JQ, Gonzalez E, Hestilow T, Haskins W, Huang YF: Review of peak detection algorithms in liquid-chromatography-mass spectrometry. Curr Genomics 2009, 10(6):388-401.
  • [5]Listgarten J, Emili A: Statistical and computational methods for comparative proteomic profiling using liquid chromatography-tandem mass spectrometry. Mol Cell Proteomic 2005, 4(4):419-434.
  • [6]Bell AW, Deutsch EW, Au CE, Kearney RE, Beavis R, Sechi S, Nilsson T, Bergeron JJ: A HUPO test sample study reveals common problems in mass spectrometry-based proteomics. Nat Methods 2009, 6(6):423-430.
  • [7]Jeffries N: Algorithms for alignment of mass spectrometry proteomic data. Bioinformatics 2005, 21(14):3066-3073.
  • [8]Service RF: Proteomics. Proteomics ponders prime time. Science 2008, 321(5897):1758-1761.
  • [9]Prince JT, Marcotte EM: Chromatographic alignment of ESI-LC-MS proteomics data sets by ordered bijective interpolated warping. Anal Chem 2006, 78(17):6140-6152.
  • [10]Vissers JPC, Langridge JI, Aerts JMFG: Analysis and quantification of diagnostic serum markers and protein signatures for Gaucher disease. Mol Cell Proteomic 2007, 6(5):755-766.
  • [11]Silva JC, Denny R, Dorschel C, Gorenstein MV, Li GZ, Richardson K, Wall D, Geromanos SJ: Simultaneous qualitative and quantitative analysis of the Escherichia coli proteome: a sweet tale. Mol Cell Proteomic 2006, 5(4):589-607.
  • [12]Li XJ, Yi EC, Kemp CJ, Zhang H, Aebersold R: A software suite for the generation and comparison of peptide arrays from sets of data collected by liquid chromatography-mass spectrometry. Mol Cell Proteomic 2005, 4(9):1328-1340.
  • [13]Silva JC, Denny R, Dorschel CA, Gorenstein M, Kass IJ, Li GZ, McKenna T, Nold MJ, Richardson K, Young P, Geromanos S: Quantitative proteomic analysis by accurate mass retention time pairs. Anal Chem 2005, 77(7):2187-200.
  • [14]Zhang XA, Asara JM, Adamec J, Ouzzani M, Elmagarmid AK: Data pre-processing in liquid chromatography-mass spectrometry-based proteomics. Bioinformatics 2005, 21(21):4054-4059.
  • [15]Katajamaa M, Miettinen J, Oresic M: MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 2006, 22(5):634-636.
  • [16]Bellew M, Coram M, Fitzgibbon M, Igra M, Randolph T, Wang P, May D Eng J, Fang RH, Lin CW, Chen JZ, Goodlett D, Whiteaker J, Paulovich A, McIntosh M: A suite of algorithms for the comprehensive analysis of complex protein mixtures using high-resolution LC-MS. Bioinformatics 2006, 22(15):1902-1909.
  • [17]Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G: XCMS: Processing mass spectrometry data for metabolite profiling using Nonlinear peak alignment, matching, and identification. Anal Chem 2006, 78(3):779-787.
  • [18]Wang P, Tang H, Fitzgibbon MP, McIntosh M, Coram M, Zhang H, Yi E, Aebersold R: A statistical method for chromatographic alignment of LC-MS data. Biostatistics 2007, 8(2):357-367.
  • [19]Lange E, Gropl C, Schulz-Trieglaff O, Leinenbach A, Huber C, Reinert K: A geometric approach for the alignment of liquid chromatography-mass spectrometry data. Bioinformatics 2007, 23(13):i273-i281.
  • [20]Sturm M, Bertsch A, Gropl C, Hildebrandt A, Hussong R, Lange E, Pfeifer N, Schulz-Trieglaff O, Zerck A, Reinert K, Kohlbacher O: OpenMS - an open-source software framework for mass spectrometry. BMC Bioinformatics 2008, 9:163. BioMed Central Full Text
  • [21]Yu T, Park Y, Johnson JM, Jones DP: apLCMS–adaptive processing of high-resolution LC/MS data. Bioinformatics 2009, 25(15):1930-1936.
  • [22]Pluskal T, Castillo S, Villar-Briones A, Oresic M: MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 2010, 11:395. BioMed Central Full Text
  • [23]Jaffe JD, Mani DR, Leptos KC, Church GM, Gillette MA, Carr SA: PEPPeR, a platform for experimental proteomic pattern recognition. Mol Cell Proteomic 2006, 5(10):1927-1941.
  • [24]Fischer B, Grossmann J, Roth V, Gruissem W, Baginsky S, Buhmann JM: Semi-supervised LC/MS alignment for differential proteomics. Bioinformatics 2006, 22(14):e132-e140.
  • [25]Tang Z, Zhang L, Cheema AK, Ressom HW: A new method for alignment of LC-MALDI-TOF data. Proteome Sci 2011, 9(Suppl 1):S10. BioMed Central Full Text
  • [26]Zhang Z: Retention time alignment of LC/MS data by a divide-and-conquer algorithm. J Am Soc Mass Spectrom 2012, 23(4):764-772.
  • [27]Mueller LN, Rinner O, Schmidt A, Letarte S, Bodenmiller B, Brusniak MY, Vitek O, Aebersold R, Muller M: SuperHirn - a novel tool for high resolution LC-MS-based peptide/protein profiling. Proteomics 2007, 7(19):3470-3480.
  • [28]Nielsen NPV, Carstensen JM, Smedsgaard J: Aligning of single and multiple wavelength chromatographic profiles for chemometric data analysis using correlation optimised warping. J Chromatogr A 1998, 805(1–2):17-35.
  • [29]Prakash A, Mallick P, Whiteaker J, Zhang H, Paulovich A, Flory M, Lee H, Aebersold R, Schwikowski B: Signal maps for mass spectrometry-based comparative proteomics. Mol Cell Proteomic 2006, 5(3):423-432.
  • [30]Lange E, Tautenhahn R, Neumann S, Gropl C: Critical assessment of alignment procedures for LC-MS proteomics and metabolomics measurements. BMC Bioinformatics 2008, 9:375. BioMed Central Full Text
  • [31]West M: Mixture-models, Monte-Carlo, Bayesian updating and dynamic-models. Comput Sci Stat 1992, 24:325-333.
  • [32]Rasmussen CE: The infinite Gaussian mixture model. Adv Neural Inf Process Syst 12 2000, 12:554-560.
  • [33]Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP: GenePattern 2.0. Nat Genet 2006, 38(5):500-501.
  • [34]Li GZ, Vissers JP, Silva JC, Golick D, Gorenstein MV, Geromanos SJ: Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures. Proteomics 2009, 9:1696-1719.
  • [35]Wilkins MR, Williams KL: Cross-species protein identification using amino acid composition, peptide mass fingerprinting, isoelectric point and molecular mass: A theoretical evaluation. J Theor Biol 1997, 186:7-15.
  • [36]Chang JT, Nevins JR: GATHER: a systems approach to interpreting genomic signatures. Bioinformatics 2006, 22(23):2926-2933.
  • [37]Dennis JG, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA: DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 2003, 4(5):P3. BioMed Central Full Text
  • [38]Lam H: Building and searching tandem mass spectral libraries for peptide identification. Mol Cell Proteomic 2011, 10(12):R111.008565.
  • [39]Nefedov AV, Mitra I, Brasier AR, Sadygov RG: Examining Troughs in the mass distribution of all theoretically possible tryptic peptides. J Proteome Res 2011, 10:4150-4157.
  • [40]Mitra I, Nefedov AV, Brasier AR, Sadygov RG: Improved mass defect model for theoretical tryptic peptides. Anal Chem 2012, 84:3026-3032.
  • [41]Schwarz KB, Gonzalez-Peralta RP, Murray KF, Molleston JP, Haber BA, Jonas MM, Rosenthal P, Mohan P, Balistreri WF, Narkewicz MR, Smith L, Lobritto SJ, Rossi S, Valsamakis A, Goodman Z, Robuck PR, Barton BA, Peds-C Clinical Research Network: The combination of ribavirin and peginterferon is superior to peginterferon and placebo for children and adolescents with chronic hepatitis C. Gastroenterology 2011, 140(2):e1.
  • [42]Patel K, Lucas JE, Thompson JW, Dubois LG, Tillmann HL, Thompson AJ, Uzarski D, Califf RM, Moseley MA, Ginsburg GS, McHutchison JG, McCarthy JJ, MURDOCK Horizon 1 Study Team: High predictive accuracy of an unbiased proteomic profile for sustained virologic response in chronic hepatitis C patients. Hepatology 2011, 53(6):1809-1818.
  文献评价指标  
  下载次数:40次 浏览次数:14次