| BMC Bioinformatics | |
| ATGme: Open-source web application for rare codon identification and custom DNA sequence optimization | |
| Edward Daniel2  Goodluck U. Onwukwe2  Rik K. Wierenga2  Susan E. Quaggin3  Seppo J. Vainio1  Mirja Krause1  | |
| [1] Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 5A, Oulu, FIN-90220, Finland | |
| [2] Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Structural Biochemistry, University of Oulu, Oulu, Finland | |
| [3] Feinberg School of Medicine, Northwestern University, Chicago 60611, IL, USA | |
| 关键词: DNA; Translation; Protein; Sequence optimization; Codon usage; | |
| Others : 1229296 DOI : 10.1186/s12859-015-0743-5 |
|
| received in 2015-03-31, accepted in 2015-09-16, 发布年份 2015 | |
【 摘 要 】
Background
Codon usage plays a crucial role when recombinant proteins are expressed in different organisms. This is especially the case if the codon usage frequency of the organism of origin and the target host organism differ significantly, for example when a human gene is expressed in E. coli. Therefore, to enable or enhance efficient gene expression it is of great importance to identify rare codons in any given DNA sequence and subsequently mutate these to codons which are more frequently used in the expression host.
Results
We describe an open-source web-based application, ATGme, which can in a first step identify rare and highly rare codons from most organisms, and secondly gives the user the possibility to optimize the sequence.
Conclusions
This application provides a simple user-friendly interface utilizing three optimization strategies: 1. one-click optimization, 2. bulk optimization (by codon-type), 3. individualized custom (codon-by-codon) optimization. ATGme is an open-source application which is freely available at: http://atgme.org
【 授权许可】
2015 Daniel et al.
【 参考文献 】
- [1]Henry I, Sharp PM. Predicting gene expression level from codon usage bias. Mol Biol Evol. 2007; 24:10-2.
- [2]Rosano GL, Ceccarelli EA. Rare codon content affects the solubility of recombinant proteins in a codon bias-adjusted Escherichia coli strain. Microb Cell Fact. 2009; 8:41. BioMed Central Full Text
- [3]Takenaka Y, Haga N, Harumoto T, Matsuura T, Mitsui Y. Transformation of Parameciumcaudatum with a novel expression vector harboring codon-optimized GFP gene. Gene. 2002; 284:233-40.
- [4]Kane JF. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr Opin Biotechnol. 1995; 6:494-500.
- [5]Kim S, Lee SB. Rare codon clusters at 5’end influence heterologous expression of archaeal gene in Escherichia coli. Protein Expr Purif. 2006; 50:49-57.
- [6]Deane CM, Saunders R. The imprint of codons on protein structure. Biotechnol J. 2011; 6:641-9.
- [7]Zhang G, Hubalewska M, Ignatova Z. Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nat Struct Mol Biol. 2009; 16:274-80.
- [8]Liu L, Yang H, Shin H, Chen RR, Li J, Du G, Chen J. How to achieve high-level expression of microbial enzymes: strategies and perspectives. Bioengineered. 2013; 4:212-23.
- [9]Roth A, Anisimova M, Cannarozzi GM. Measuring codon usage bias. Codon evolution: mechanisms and models. Oxford University Press Inc, New York; 2012.
- [10]Nakamura Y, Gojobori T, Ikemura T. Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res. 2000; 28:292.
- [11]Codon Usage Database. http://www. kazusa.or.jp/codon/ webcite
- [12]Benson DA, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res. 2015; 43:D30-5.
- [13]Gao W, Rzewski A, Sun H, Robbins PD, Gambotto A. UpGene: application of a web‐based DNA codon optimization algorithm. Biotechnol Prog. 2004; 20:443-8.
- [14]Richardson SM, Wheelan SJ, Yarrington RM, Boeke JD. GeneDesign: rapid, automated design of multikilobase synthetic genes. Genome Res. 2006; 16:550-6.
- [15]Jayaraj S, Reid R, Santi DV. GeMS: an advanced software package for designing synthetic genes. Nucleic Acids Res. 2005; 33:3011-6.
- [16]Wu G, Bashir-Bello N, Freeland SJ. The synthetic gene designer: a flexible web platform to explore sequence manipulation for heterologous expression. Protein Expr Purif. 2006; 47:441-5.
- [17]ATGme - codon optimization tool [http://atgme.org] accessed 18 September 2015.
- [18]Behura SK, Severson DW. Codon usage bias: causative factors, quantification methods and genome‐wide patterns: with emphasis on insect genomes. Biol Rev. 2013; 88:49-61.
- [19]Hershberg R, Petrov DA. Selection on codon bias. Annu Rev Genet. 2008; 42:287-99.
- [20]Puigbo P, Guzman E, Romeu A, Garcia-Vallve S. OPTIMIZER: a web server for optimizing the codon usage of DNA sequences. Nucleic Acids Res. 2007; 35:W126-31.
- [21]Grote A, Hiller K, Scheer M, Munch R, Nortemann B, Hempel DC, Jahn D. JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res. 2005; 33:W526-31.
- [22]Supek F, Vlahovicek K. INCA: synonymous codon usage analysis and clustering by means of self-organizing map. Bioinformatics. 2004; 20:2329-30.
- [23]O’Connor M. tRNA imbalance promotes − 1 frameshifting via near-cognate decoding. J Mol Biol. 1998; 279:727-36.
- [24]Farabaugh PJ, Bjork GR. How translational accuracy influences reading frame maintenance. EMBO J. 1999; 18:1427-34.
- [25]Gong M, Gong F, Yanofsky C. Overexpression of tnaC of Escherichia coli inhibits growth by depleting tRNA2Pro availability. J Bacteriol. 2006; 188:1892-8.
- [26]Parmley JL, Huynen MA. Clustering of codons with rare cognate tRNAs in human genes suggests an extra level of expression regulation. PLoS Genet. 2009; 5:e1000548.