期刊论文详细信息
Chemistry Central Journal
One-pot method of synthesis of Pt/SnO2 system and its electrocatalytic activity
Agnieszka Martyla2  Maciej Kopczyk2  Piotr Marciniak3  Robert Przekop1 
[1] Centre of Advanced Technologies Adam Mickiewicz University, 6 Grunwaldzka St., Poznan, 60-780, Poland
[2] Institute of Non-Ferrous Metals Division in Poznan, Central Laboratory of Batteries and Cells, 12 Forteczna St., Poznan, 61-362, Poland
[3] Adam Mickiewicz University Foundation Poznan Science and Technology Park, 46 Rubiez St., Poznan, 61-612, Poland
关键词: One-pot method;    Low temperature treatment;    Electrocatalyst;    Sol–gel;   
Others  :  1213795
DOI  :  10.1186/s13065-014-0049-0
 received in 2014-04-21, accepted in 2014-07-25,  发布年份 2014
PDF
【 摘 要 】

Background

Electro-oxidation of methanol in acidic solution was investigated on a Pt/SnO2 based electrocatalyst obtained by the sol–gel method. Pt/SnO2 systems were prepared by one pot synthesis using a sol–gel method and tin (IV) acetate as a precursor of SnO2 and water solution of hexachloroplatinum acid as a source of metallic phase.

Results

The described method, thanks to its simplicity and mildprocessing temperature, offers uniform dispersion of metal phase in the bulk of the gel forming as a result of hydrolysis and condnastionon of tin precursor. It has been found that the obtained system exhibits high electrocatalytic activity just after low temperature processing. This work investigates the effect of the Pt concentration and the influence thermal treatment of Pt/SnO2 on its electrochemical activity.

Conclusions

The described procedure is a simple method of producing a highly active Pt/SnO2 electrocatalyst without using thermal treatment in reducing conditions. The oxidation state of Pt is a determining factor for its activity in an electrooxidation process.

【 授权许可】

   
2014 Martyla et al.

【 预 览 】
附件列表
Files Size Format View
20150616014646782.pdf 1837KB PDF download
Figure 9. 80KB Image download
Figure 8. 33KB Image download
Figure 7. 44KB Image download
Figure 6. 30KB Image download
Figure 5. 116KB Image download
Figure 4. 45KB Image download
Figure 3. 45KB Image download
Figure 2. 46KB Image download
Figure 1. 12KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Routray K, Zhou W, Kiely CJ, Grünert W, Wachs IE: Origin of the synergistic interaction between MoO3 and iron molybdate for the selective oxidation of methanol to formaldehyde. J Catal 2010, 275:84-98.
  • [2]Routray K, Zhou W, Kiely CJ, Grünert W, Wachs IE: Catalysis Science of Methanol Oxidation over Iron Vanadate Catalysts: Nature of the Catalytic Active Sites. ACS Catal 2011, 1:54-66.
  • [3]Sung JS, Kug-Seung L, Yong-Hun C, Soo-Kil K, Tae-Hoon L, Yung-Eun S: Electrocatalyst properties of TiO2-embedded Pt nanoparticles in oxidation of methanol: particle size effect and proton spillover effect. Electrocatalysis 2011, 2:297-306.
  • [4]Liu H, Song C, Zhang L, Zhang J, Wang H, Wilkinson DP: A review of anode catalysis in the direct methanol fuel cell. J Power Sources 2006, 155:95-110.
  • [5]Hung WZ, Chung WH, Tsai DS, Wilkinson DP, Huang YS: CO tolerance and catalytic activity of Pt/Sn/SnO2 nanowires loaded on a carbon paper. Electrochim Acta 2010, 55:2116-2122.
  • [6]Takasaki F, Matsuie S, Takabatake Y, Noda X, Hayashi A, Shiratori Y, Ito K, Sasaki K: Carbon free Pt electrocatalysts supported SnO2 for polymer electrolyte fuel cells: electrocatalytic activity and durability. J Electrochem Soc 2011, 158:1270-1275.
  • [7]Zhanga H, Hua C, Hea X, Hongb L, Dub , Zhanga Y: Pt support of multidimensional active sites and radial channels formed by SnO2 flower-like crystals for methanol and ethanol oxidation. J Power Sources 2011, 196:4499-4505.
  • [8]Zhang P, Huang SY, Popov BN: Mesoporous tin oxide as an oxidation-resistant catalyst support for proton exchange membrane fuel cells University of South Carolina Scholar Commons. J Electrochem Soc 2010, 157:1163-1172.
  • [9]Chen J, Zhang R, Han L, Tu B, Zhao D: One-pot synthesis of thermally stable gold@mesoporous silica core–shell nanospheres with catalytic activity. Nano Res 2013, 6(12):871-879.
  • [10]Demir-Cakan R, Hu YS, Antonietti M, Maier J, Titirici MM: Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and Lithium storage properties. Chem Mater 2008, 20(4):1227-1229.
  • [11]Villullas HM, Mattos-Costa FI, Nascente PAP, Bulhoes LOS: Anodic oxidation of formaldehyde on Pt-modified SnO2 thin film electrodes prepared by a sol–gel method. Electrochim Acta 2004, 49:3909-3916.
  • [12]Fasaki I, Suchea M, Mousdis G, Kiriakis G, Kompitsas M: The effect of Au and Pt nanoclusters on the structural and hydrogen sensing properties of SnO2 thin films. Thin Solid Films 2009, 518:1109-1113.
  • [13]Esfandyarpour S, Mohajerzadeh S, Famini S, Khodadadi A, Soleimani EA: High sensitivity Pt-doped SnO2 gas sensors fabricated using sol–gel solution on micromachined (100) Si substrates. Sensors Actuators B Chem 2004, 100:190-194.
  • [14]Chang YC, Yan CY, Wu RY: Preparation of Pt@SnO2 core-shell nanoparticles for photocatalytic degradation of formaldehyde. J Chin Chem Soc 2014, 61:345-349.
  • [15]Epifani M, Alvisi M, Mirenghi L, Leo G, Siciliano P, Vasanelli L: Sol–gel processing and characterization of pure and metal-doped SnO2 thin films. J Am Ceramic Soc 2001, 84:48-54.
  • [16]Kirszensztejn P, Szymkowiak A, Przekop R, Mackowska E: Stabilization of small metallic particles at the well matched texture of the support. Pol J Environ Stud 2006, 15:74-80.
  • [17]Alonso-Lemus I, Verde-Gómez Y, Álvarez-Contreras L: Platinum nanoparticles synthesis supported in mesoporous silica and its effect in MCM-41 lattice. Int J Electrochemistry Sci 2011, 6:4176-4187.
  • [18]Madler L, Sahm T, Gurlo A, Grunwaldt JD, Barsan N, Weimar U, Pratsinis SE: Sensing low concentrations of CO using flame-spray-made Pt/SnO2 nanoparticles. J Nanoparticle Res 2006, 8:783-796.
  • [19]Anvir D: Organic chemistry within ceramic matrices: doped sol–gel materials. Acc Chem Res 1995, 28:328-334.
  • [20]Pagliaro M, Pandarus V, Béland F, Ciriminna R, Palmisano G, Carà PD: A new class of heterogeneous Pd catalysts for synthetic organic chemistry. Catalysis Sci Technol 2011, 1:736-739.
  • [21]Jia CJ, Schüth F: Colloidal metal nanoparticles as a component of designed catalyst. Phys Chem Chem Phys 2011, 13:2457-2487.
  • [22]Warren S, Perkins MR, Adams AM, Kamperman M, Burns AA, Arora H, Herz E, Suteewong T, Sai H, Li Z, Werner J, Song J, Werner-Zwanziger U, Zwanziger JW, Grätzel M, DiSalvo FJ, Wiesner U: A silica sol–gel design strategy for nanostructured metallic materials. Nat Mater 2012, 11:460-467.
  • [23]Guo DJ, You JM: Highly catalytic activity of Pt electrocatalyst supported on sulphated SnO2/multi-walled carbon nanotube composites for methanol electro-oxidation. J Power Sources 2012, 198:127-131.
  • [24]Kaidanovych ZV, Kalishyn YY, Strizhak PE: Size-controlled synthesis of platinum nanoparticles supported on Al2O3 and their thermal stability. Theor Exp Chem 2013, 48:376-380.
  • [25]Kamiuchi N, Taguchi K, Matsui T, Kikuchi R, Eguchi K: Sintering and redispersion of platinum catalysts supported on tin oxide. Appl Catal B Environ 2009, 89:65-72.
  • [26]Kirszensztejn P, Szymkowiak A, Martyła A, Marciniak P, Przekop R: Porosity of aluminium oxide-based binary systems obtained by sol–gel method. React Kinet Catal Lett 2004, 82(2):287-293.
  • [27]Gaber A, Abdel- Rahim MA, Abdel-Latief AY, Abdel-Salam MN: Influence of Calcination Temperature on the Structure and Porosity of Nanocrystalline SnO2 Synthesized by a Conventional Precipitation method International. J Electrochemistry Sci 2014, 9:81-95.
  • [28]Wanke SE: Sintering of Commercial Supported Platinum Group Metal Catalysts. Prog Catalyst Deactivation NATO Adv Study Inst Series 1982, 54:315-328.
  • [29]Krishnakumar T, Jayaprakash R, Singh VN, Mehta BR, Phani AR: Synthesis and characterization of tin oxide nanoparticle for humidity sensor applications. J Nano Res 2008, 4:91-101.
  • [30]Kirszensztejn P, Szymkowiak A: Thermal analysis of binary system Al2O3–SnO2 obtained by sol–gel technique. Part I. Oxidative atmosphere. J Therm Anal Calorim 2005, 81:35-39.
  • [31]Radivojevic D, Seshan K, Lefferts L: Preparation of well-dispersed Pt/SiO2 catalysts using low-temperature treatments. Appl Catal A Gen 2006, 301:51-58.
  • [32]Sandoval-Gonza´lez A, Borja-Arco E, Escalante J, Jime´nez-Sandoval O, Gamboa SA: Methanol oxidation reaction on PtSnO2 obtained by microwave- assisted chemical reduction. Int J Hydrog Energy 2012, 37:1752-1759.
  • [33]Iwasita T: Fuel cells: spectroscopic studies in the electrocatalysis of alcohol oxidation. J Braz Chem Soc 2002, 13:401-404.
  • [34]Baker RT, Bartholomew CH, Dadyburjor DB: Stability of Supported Catalysts: Sintering and Redispersion, Catalytic Studies Division. In ᅟ. Edited by Horsley JA. Catalytica, Mountain View, California; 1991.
  • [35]Bartholomew CH: Mechanisms of catalyst deactivation. Appl Catalysis A:Gen 2001, 212:17-60.
  • [36]You EH, Scott K: Direct methanol alkaline fuel cell with catalyzed metal mesh anodes. Electrochem Commun 2004, 6:361-365.
  文献评价指标  
  下载次数:14次 浏览次数:3次