期刊论文详细信息
BMC Biotechnology
Identification of an antibody fragment specific for androgen-dependent prostate cancer cells
Ryan M Williams1  Cyrus J Hajiran3  Sara Nayeem2  Letha J Sooter2 
[1] Current address: Memorial Sloan Kettering Cancer Center, Molecular Pharmacology & Chemistry Program, 1275 York Ave., New York, NY 10065, USA
[2] Department of Basic Pharmaceutical Sciences, West Virginia University, 1 Medical Center Drive, PO Box 9530, Morgantown, WV 26506, USA
[3] Department of Biology, West Virginia University, 53 Campus Drive, PO Box 6057, Morgantown, WV 26506, USA
关键词: Yeast;    Library screening;    scFv;    Antibody fragment;    Prostate cancer;   
Others  :  1084613
DOI  :  10.1186/1472-6750-14-81
 received in 2014-05-12, accepted in 2014-08-29,  发布年份 2014
PDF
【 摘 要 】

Background

Prostate cancer is the most-diagnosed non-skin cancer among males in the US, and the second leading cause of cancer-related death. Current methods of treatment and diagnosis are not specific for the disease. This work identified an antibody fragment that binds selectively to a molecule on the surface of androgen-dependent prostate cancer cells but not benign prostatic cells.

Results

Antibody fragment identification was achieved using a library screening and enrichment strategy. A library of 109 yeast-displayed human non-immune antibody fragments was enriched for those that bind to androgen-dependent prostate cancer cells, but not to benign prostatic cells or purified prostate-specific membrane antigen (PSMA). Seven rounds of panning and fluorescence-activated cell sorting (FACS) screening yielded one antibody fragment identified from the enriched library. This molecule, termed HiR7.8, has a low-nanomolar equilibrium dissociation constant (Kd) and high specificity for androgen-dependent prostate cancer cells.

Conclusions

Antibody fragment screening from a yeast-displayed library has yielded one molecule with high affinity and specificity. With further pre-clinical development, it is hoped that the antibody fragment identified using this screening strategy will be useful in the specific detection of prostate cancer and in targeted delivery of therapeutic agents for increased efficacy and reduced side effects.

【 授权许可】

   
2014 Williams et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113163032933.pdf 1141KB PDF download
Figure 5. 47KB Image download
Figure 4. 51KB Image download
Figure 3. 53KB Image download
Figure 2. 58KB Image download
Figure 1. 67KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Siegel R, Ma J, Zou Z, Jemal A: Cancer statistics, 2014. CA Cancer J Clin 2014, 64(1):9-29.
  • [2]Chou R, Dana T, Bougatsos C, Fu R, Blazina I, Gleitsmann K, Rugge JB: Treatments for localized prostate cancer: systematic review to update the 2002 US preventive services task force recommendation. Evid Synthesis 2011, 91:12-05161-EF-1.
  • [3]Yao SL, Lu-Yao G: Population-based study of relationships between hospital volume of prostatectomies, patient outcomes, and length of hospital stay. J Natl Cancer Inst 1999, 91(22):1950-1956.
  • [4]Feldman BJ, Feldman D: The development of androgen-independent prostate cancer. Nat Rev Cancer 2001, 1(1):34-45.
  • [5]Yagoda A, Petrylak D: Cytotoxic chemotherapy for advanced hormone-resistant prostate cancer. Cancer 2006, 71(S3):1098-1109.
  • [6]Extra JM, Rousseau F, Bruno R, Clavel M, Le Bail N, Marty M: Phase I and pharmacokinetic study of Taxotere (RP 56976; NSC 628503) given as a short intravenous infusion. Cancer Res 1993, 53(5):1037-1042.
  • [7]Pienta KJ: Preclinical mechanisms of action of docetaxel and docetaxel combinations in prostate cancer. Semin Oncol 2001, 28(S15):3-7. Elsevier
  • [8]Pienta KJ, Smith DC: Advances in prostate cancer chemotherapy: a New Era Begins. CA Cancer J Clin 2005, 55(5):300-318.
  • [9]Lin K, Croswell JM, Koenig H, Lam C, Maltz A: Prostate-specific antigen-based screening for prostate cancer: an evidence update for the US preventive services task force. Evid Synthesis 2011, 90:12-05160-EF-1.
  • [10]Chou R, Croswell JM, Dana T, Bougatsos C, Blazina I, Fu R, Gleitsmann K, Koenig HC, Lam C, Maltz A: Screening for prostate cancer: a review of the evidence for the US Preventive Services Task Force. Ann Intern Med 2011, 155(11):762.
  • [11]Moyer VA: Screening for prostate cancer: US Preventive Services Task Force recommendation statement. Ann Intern Med 2012, 157(2):120-134.
  • [12]Barry MJ: Screening for prostate cancer—the controversy that refuses to die. N Engl J Med 2009, 360(13):1351-1354.
  • [13]Pollack CE, Noronha G, Green GE, Bhavsar NA, Carter HB: Primary care Providers’ response to the US preventive services task force draft recommendations on screening for prostate cancer. Arch Intern Med 2012, 172(8):668-670.
  • [14]Woolf SH: Screening for prostate cancer with prostate-specific antigen—an examination of the evidence. N Engl J Med 1995, 333(21):1401-1405.
  • [15]Thompson IM, Chi C, Ankerst DP, Goodman PJ, Tangen CM, Lippman SM, Lucia MS, Parnes HL, Coltman CA Jr: Effect of finasteride on the sensitivity of PSA for detecting prostate cancer. J Natl Cancer Inst 2006, 98(16):1128-1133.
  • [16]Williams R, Naz R: Novel biomarkers and therapeutic targets for prostate cancer. Front Biosci (Schol Ed) 2010, 2:677-684.
  • [17]Makarov DV, Loeb S, Getzenberg RH, Partin AW: Biomarkers for Prostate Cancer. In Annual Review of Medicine, Volume 60. Palo Alto: Annual Reviews; 2009:139-151.
  • [18]Prensner JR, Rubin MA, Wei JT, Chinnaiyan AM: Beyond PSA: The next generation of prostate cancer biomarkers. Sci Transl Med 2012, 4(127):127rv3.
  • [19]Morris KN, Jensen KB, Julin CM, Weil M, Gold L: High affinity ligands from in vitro selection: complex targets. Proc Natl Acad Sci U S A 1998, 95(6):2902-2907.
  • [20]Guo KT, Ziemer G, Paul A, Wendel HP: CELL-SELEX: Novel perspectives of aptamer-based therapeutics. Int J Mol Sci 2008, 9(4):668-678.
  • [21]Huse WD, Sastry L, Iverson SA, Kang AS, Alting-Mees M, Burton DR, Benkovic SJ, Lerner RA: Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science 1989, 246(4935):1275-1281.
  • [22]Gunneriusson E, Samuelson P, Uhlen M, Nygren PA, Stahl S: Surface display of a functional single-chain Fv antibody on staphylococci. J Bacteriol 1996, 178(5):1341-1346.
  • [23]Boder ET, Wittrup KD: Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 1997, 15(6):553-557.
  • [24]Figini M, Obici L, Mezzanzanica D, Griffiths A, Colnaghi MI, Winter G, Canevari S: Panning phage antibody libraries on cells: isolation of human Fab fragments against ovarian carcinoma using guided selection. Cancer Res 1998, 58(5):991-996.
  • [25]Jakobsen CG, Rasmussen N, Laenkholm AV, Ditzel HJ: Phage display derived human monoclonal antibodies isolated by binding to the surface of live primary breast cancer cells recognize GRP78. Cancer Res 2007, 67(19):9507-9517.
  • [26]Yu B, Ni M, Li WH, Lei P, Xing W, Xiao DW, Huang Y, Tang ZJ, Zhu HF, Shen GX: Human scFv antibody fragments specific for hepatocellular carcinoma selected from a phage display library. World J Gastroenterol 2005, 11(26):3985-3989.
  • [27]Wang XX, Shusta EV: The use of scFv-displaying yeast in mammalian cell surface selections. J Immunol Methods 2005, 304(1–2):30-42.
  • [28]Feldhaus MJ, Siegel RW, Opresko LK, Coleman JR, Feldhaus JM, Yeung YA, Cochran JR, Heinzelman P, Colby D, Swers J, Graff C, Wiley HS, Wittrup KD: Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat Biotechnol 2003, 21(2):163-170.
  • [29]Jung ST, Jeong KJ, Iverson BL, Georgiou G: Binding and enrichment of Escherichia coli spheroplasts expressing inner membrane tethered scFv antibodies on surface immobilized antigens. Biotechnol Bioeng 2007, 98(1):39-47.
  • [30]Qiu J-K, Jung S-T, Georgiou G, Hang H-Y: Enrichment of Escherichia coli spheroplasts displaying scFv antibodies specific for antigens expressed on the human cell surface. Appl Microbiol Biotechnol 2010, 88(6):1385-1391.
  • [31]Mazor Y, Van Blarcom T, Carroll S, Georgiou G: Selection of full-length IgGs by tandem display on filamentous phage particles and Escherichia coli fluorescence-activated cell sorting screening. FEBS J 2010, 277(10):2291-2303.
  • [32]Colcher D, Pavlinkova G, Beresford G, Booth B, Choudhury A, Batra S: Pharmacokinetics and biodistribution of genetically-engineered antibodies. Q J Nucl Med 1998, 42(4):225-241.
  • [33]Brockmann E-C, Cooper M, Strömsten N, Vehniäinen M, Saviranta P: Selecting for antibody scFv fragments with improved stability using phage display with denaturation under reducing conditions. J Immunol Methods 2005, 296(1):159-170.
  • [34]Asano R, Watanabe Y, Kawaguchi H, Fukazawa H, Nakanishi T, Umetsu M, Hayashi H, Katayose Y, Unno M, Kudo T: Highly effective recombinant format of a humanized IgG-like bispecific antibody for cancer immunotherapy with retargeting of lymphocytes to tumor cells. J Biol Chem 2007, 282(38):27659-27665.
  • [35]Böldicke T, Tesar M, Griesel C, Rohde M, Gröne HJ, Waltenberger J, Kollet O, Lapidot T, Yayon A, Weich H: Anti-VEGFR-2 scFvs for Cell Isolation. Single‒Chain Antibodies Recognizing the Human Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2/flk-1) on the Surface of Primary Endothelial Cells and Preselected CD34+ Cells from Cord Blood. Stem Cells 2001, 19(1):24-36.
  • [36]Benedict CA, MacKrell AJ, Anderson WF: Determination of the binding affinity of an anti-CD34 single-chain antibody using a novel, flow cytometry based assay. J Immunol Methods 1997, 201(2):223-231.
  • [37]Schier R, Bye J, Apell G, McCall A, Adams GP, Malmqvist M, Weiner LM, Marks JD: Isolation of High-affinity Monomeric Human Anti-c-erbB-2 Single chain Fv Using Affinity-driven Selection. J Mol Biol 1996, 255(1):28-43.
  • [38]Adams GP, Schier R, Marshall K, Wolf EJ, McCall AM, Marks JD, Weiner LM: Increased affinity leads to improved selective tumor delivery of single-chain Fv antibodies. Cancer Res 1998, 58(3):485-490.
  • [39]Jackson H, Bacon L, Pedley R, Derbyshire E, Field A, Osbourn J, Allen D: Antigen specificity and tumour targeting efficiency of a human carcinoembryonic antigen-specific scFv and affinity-matured derivatives. Br J Cancer 1998, 78(2):181.
  • [40]Boder ET, Midelfort KS, Wittrup KD: Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc Natl Acad Sci 2000, 97(20):10701-10705.
  • [41]He J, Wang Y, Feng J, Zhu X, Lan X, Iyer AK, Zhang N, Seo Y, VanBrocklin HF, Liu B: Targeting prostate cancer cells in vivo using a rapidly internalizing novel human single-chain antibody fragment. J Nucl Med 2010, 51(3):427-432.
  • [42]Gao C, Mao S, Ronca F, Zhuang S, Quaranta V, Wirsching P, Janda KD: De novo identification of tumor-specific internalizing human antibody–receptor pairs by phage-display methods. J Immunol Methods 2003, 274(1):185-197.
  • [43]Nielsen UB, Kirpotin DB, Pickering EM, Drummond DC, Marks JD: A novel assay for monitoring internalization of nanocarrier coupled antibodies. BMC Immunol 2006, 7(1):24. BioMed Central Full Text
  • [44]Schrama D, Reisfeld RA, Becker JC: Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov 2006, 5(2):147-159.
  • [45]Zeng L, Rowland RG, Lele SM, Kyprianou N: Apoptosis incidence and protein expression of p53, TGF-beta receptor II, p27Kip1, and Smad4 in benign, premalignant, and malignant human prostate. Hum Pathol 2004, 35(3):290-297.
  • [46]Chen W, Pang B, Yang B, Zhou J, Sun Y: Differential proteome analysis of conditioned medium of BPH-1 and LNCaP cells. Chin Med J Beijing 2011, 124(22):3806-3809.
  • [47]Chakrabarti R, Robles LD, Gibson J, Muroski M: Profiling of differential expression of messenger RNA in normal, benign, and metastatic prostate cell lines. Cancer Genet Cytogenet 2002, 139(2):115-125.
  • [48]Amler LC, Agus DB, LeDuc C, Sapinoso ML, Fox WD, Kern S, Lee D, Wang V, Leysens M, Higgins B, Martin J, Gerald W, Dracopoli N, Cordon-Cardo C, Scher HI, Hampton GM: Dysregulated expression of androgen-responsive and nonresponsive genes in the androgen-independent prostate cancer xenograft model CWR22-R1. Cancer Res 2000, 60(21):6134-6141.
  • [49]Karan D, Kelly DL, Rizzino A, Lin MF, Batra SK: Expression profile of differentially-regulated genes during progression of androgen-independent growth in human prostate cancer cells. Carcinogenesis 2002, 23(6):967-976.
  • [50]Chen Q, Watson JT, Marengo SR, Decker KS, Coleman I, Nelson PS, Sikes RA: Gene expression in the LNCaP human prostate cancer progression model: progression associated expression in vitro corresponds to expression changes associated with prostate cancer progression in vivo. Cancer Lett 2006, 244(2):274-288.
  • [51]Yang M, Loda M, Sytkowski AJ: Identification of genes expressed differentially by LNCaP or PC-3 prostate cancer cell lines. Cancer Res 1998, 58(16):3732-3735.
  • [52]Liu Z, Marquez M, Nilsson S, Holmberg AR: Comparison of protein expression in two prostate cancer cell-lines, LNCaP and DU145, after treatment with somatostatin. Oncol Rep 2009, 22(6):1451.
  • [53]Aalinkeel R, Nair MPN, Sufrin G, Mahajan SD, Chadha KC, Chawda RP, Schwartz SA: Gene expression of angiogenic factors correlates with metastatic potential of prostate cancer cells. Cancer Res 2004, 64(15):5311-5321.
  • [54]Okamura K, Koike H, Matsui H, Suzuki K: Gene Expression Profiles of Prostate Cancer Cell Lines, LNCaP, PC-3 and DU-145, Assessed by cDNA Microarray. Kitakanto Med J 2008, 58(4):363-369.
  • [55]Rérole AL, Gobbo J, De Thonel A, Schmitt E, de Barros JPP, Hammann A, Lanneau D, Fourmaux E, Deminov O, Micheau O: Peptides and aptamers targeting HSP70: a novel approach for anticancer chemotherapy. Cancer Res 2011, 71(2):484-495.
  • [56]Robert R, Jacobin-Valat MJ, Daret D, Miraux S, Nurden AT, Franconi JM, Clofent-Sanchez G: Identification of human scFvs targeting atherosclerotic lesions. J Biol Chem 2006, 281(52):40135-40143.
  • [57]Berezovski MV, Lechmann M, Musheev MU, Mak TW, Krylov SN: Aptamer-facilitated biomarker discovery (AptaBiD). J Am Chem Soc 2008, 130(28):9137-9143.
  • [58]Ni X, Zhang Y, Ribas J, Chowdhury WH, Castanares M, Zhang Z, Laiho M, DeWeese TL, Lupold SE: Prostate-targeted radiosensitization via aptamer-shRNA chimeras in human tumor xenografts. J Clin Invest 2011, 121(6):2383-2390.
  • [59]Senter PD: Potent antibody drug conjugates for cancer therapy. Curr Opin Chem Biol 2009, 13(3):235-244.
  • [60]Regino C, Wong K, Milenic D, Holmes E, Garmestani K, Choyke P, Brechbiel M: Preclinical evaluation of a monoclonal antibody (3C6) specific for prostate-specific membrane antigen. Curr Radiopharm 2009, 2(1):9-17.
  • [61]Sievers EL, Linenberger M: Mylotarg: antibody-targeted chemotherapy comes of age. Curr Opin Oncol 2001, 13(6):522-527.
  • [62]Stebbing J, Copson E, O’Reilly S: Herceptin (trastuzamab) in advanced breast cancer. Cancer Treat Rev 2000, 26(4):287-290.
  • [63]Kanter G, Yang J, Voloshin A, Levy S, Swartz JR, Levy R: Cell-free production of scFv fusion proteins: an efficient approach for personalized lymphoma vaccines. Blood 2007, 109(8):3393-3399.
  • [64]Begent R, Chester K: Single-chain Fv antibodies for targeting cancer therapy. Biochem Soc Trans 1997, 25(2):715-716.
  • [65]Clark M: Antibody humanization: a case of the ‘Emperor’s new clothes’? Immunol Today 2000, 21(8):397-402.
  • [66]Elsässer-Beile U, Reischl G, Wiehr S, Bühler P, Wolf P, Alt K, Shively J, Judenhofer MS, Machulla HJ, Pichler BJ: PET imaging of prostate cancer xenografts with a highly specific antibody against the prostate-specific membrane antigen. J Nucl Med 2009, 50(4):606-611.
  • [67]Veiseh O, Gunn JW, Zhang M: Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 2010, 62(3):284-304.
  • [68]Johnston WW, Szpak CA, Lottich SC, Thor A, Schlom J: Use of a monoclonal antibody (B72. 3) as a novel immunohistochemical adjunct for the diagnosis of carcinomas in fine needle aspiration biopsy specimens. Hum Pathol 1986, 17(5):501-513.
  • [69]Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, Smith MR, Kwak EL, Digumarthy S, Muzikansky A: Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 2007, 450(7173):1235-1239.
  • [70]Horoszewicz JS, Leong SS, Kawinski E, Karr JP, Rosenthal H, Chu TM, Mirand EA, Murphy GP: LNCaP model of human prostatic carcinoma. Cancer Res 1983, 43(4):1809-1818.
  • [71]Wang M, Liu A, Garcia FU, Rhim JS, Stearns ME: Growth of HPV-18 immortalized human prostatic intraepithelial neoplasia cell lines. Influence of IL-10, follistatin, activin-A, and DHT. Int J Oncol 1999, 14(6):1185-1195.
  • [72]Hayward S, Dahiya R, Cunha G, Bartek J, Deshpande N, Narayan P: Establishment and characterization of an immortalized but non-transformed human prostate epithelial cell line: BPH-1. In Vitro CellDev Biol Anim 1995, 31(1):14-24.
  • [73]Jiang M, Strand DW, Fernandez S, He Y, Yi Y, Birbach A, Qiu Q, Schmid J, Tang DG, Hayward SW: Functional remodeling of benign human prostatic tissues in vivo by spontaneously immortalized progenitor and intermediate cells. Stem Cells 2009, 28(2):344-356.
  • [74]Stone K, Mickey D, Wunderli H, Mickey G, Paulson D: Isolation of a human prostate carcinoma cell line (DU 145). Int J Cancer 1978, 21(3):274-281.
  • [75]Kaighn M, Narayan KS, Ohnuki Y, Lechner J, Jones L: Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol 1979, 17(1):16-23.
  • [76]Bello D, Webber M, Kleinman H, Wartinger D, Rhim J: Androgen responsive adult human prostatic epithelial cell lines immortalized by human papillomavirus 18. Carcinog 1997, 18(6):1215-1223.
  • [77]Silver DA, Pellicer I, Fair WR, Heston W, Cordon-Cardo C: Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res 1997, 3(1):81-85.
  • [78]Langan TJ, Nyakubaya VT, Casto LD, Dolan TD, Archer-Hartmann SA, Yedlapalli SL, Sooter LJ, Holland LA: Assessment of aptamer-steroid binding using stacking-enhanced capillary electrophoresis. Electrophoresis 2012, 33(5):866-869.
  文献评价指标  
  下载次数:83次 浏览次数:27次