期刊论文详细信息
BMC Bioinformatics
Pathomx: an interactive workflow-based tool for the analysis of metabolomic data
Martin A Fitzpatrick1  Catherine M McGrath1  Stephen P Young1 
[1] Rheumatology Research Group, Centre for Translational Inflammation Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2WD, UK
关键词: Python;    Automation;    Workflow;    Visualisation;    Analysis;    nmr;    Omics;    Metabolomics;   
Others  :  1084484
DOI  :  10.1186/s12859-014-0396-9
 received in 2014-03-21, accepted in 2014-11-24,  发布年份 2014
PDF
【 摘 要 】

Background

Metabolomics is a systems approach to the analysis of cellular processes through small-molecule metabolite profiling. Standardisation of sample handling and acquisition approaches has contributed to reproducibility. However, the development of robust methods for the analysis of metabolomic data is a work-in-progress. The tools that do exist are often not well integrated, requiring manual data handling and custom scripting on a case-by-case basis. Furthermore, existing tools often require experience with programming environments such as MATLAB® or R to use, limiting accessibility. Here we present Pathomx, a workflow-based tool for the processing, analysis and visualisation of metabolomic and associated data in an intuitive and extensible environment.

Results

The core application provides a workflow editor, IPython kernel and a HumanCyc™-derived database of metabolites, proteins and genes. Toolkits provide reusable tools that may be linked together to create complex workflows. Pathomx is released with a base set of plugins for the import, processing and visualisation of data. The IPython backend provides integration with existing platforms including MATLAB® and R, allowing data to be seamlessly transferred. Pathomx is supplied with a series of demonstration workflows and datasets. To demonstrate the use of the software we here present an analysis of 1D and 2D 1H NMR metabolomic data from a model system of mammalian cell growth under hypoxic conditions.

Conclusions

Pathomx is a useful addition to the analysis toolbox. The intuitive interface lowers the barrier to entry for non-experts, while scriptable tools and integration with existing tools supports complex analysis. We welcome contributions from the community.

【 授权许可】

   
2014 Fitzpatrick et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113162053280.pdf 1433KB PDF download
Figure 5. 27KB Image download
Figure 4. 26KB Image download
Figure 3. 86KB Image download
Figure 2. 31KB Image download
Figure 1. 25KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB: Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol 2004, 22:245-252.
  • [2]Armitage EG, Barbas C: Metabolomics in cancer biomarker discovery: Current trends and future perspectives.J Pharm. Biomed Anal 2013.
  • [3]Fitzpatrick M, Young SP: Metabolomics - a novel window into inflammatory disease. Swiss Med Wkly 2013, 143:1-12.
  • [4]Salek RM, Haug K, Conesa P, Hastings J, Williams M, Mahendraker T, Maguire E, González-Beltrán AN, Rocca-Serra P, Sansone S-A, Steinbeck C: The MetaboLights repository: curation challenges in metabolomics. Database (Oxford) 2013, 2013:bat029.
  • [5]Ludwig C, Günther UL: MetaboLab–advanced NMR data processing and analysis for metabolomics. BMC Bioinformatics 2011, 12:366. BioMed Central Full Text
  • [6]Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, Djoumbou Y, Mandal R, Aziat F, Dong E, Bouatra S, Sinelnikov I, Arndt D, Xia J, Liu P, Yallou F, Bjorndahl T, Perez-Pineiro R, Eisner R, Allen F, Neveu V, Greiner R, Scalbert A: HMDB 3.0–The Human Metabolome Database in 2013. Nucleic Acids Res 2013, 41:D801-D807.
  • [7]Curcin V, Ghanem M: Scientific workflow systems - can one size fit all? Cairo Int Biomed Eng Conf 2008, 2008:1-9. 18-20 December
  • [8]Oinn T, Addis M, Ferris J, Marvin D, Senger M, Greenwood M, Carver T, Glover K, Pocock MR, Wipat A, Li P: Taverna: a tool for the composition and enactment of bioinformatics workflows. Bioinformatics 2004, 20:3045-3054.
  • [9]Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, Zhang Y, Blankenberg D, Albert I, Taylor J, Miller W, Kent WJ, Nekrutenko A: Galaxy: a platform for interactive large-scale genome analysis. Genome Res 2005, 15:1451-1455.
  • [10]Xia J, Mandal R, Sinelnikov IV, Broadhurst D, Wishart DS: MetaboAnalyst 2.0-a comprehensive server for metabolomic data analysis. Nucleic Acids Res 2012, 40:W127-W133.
  • [11]Hunter JD: Matplotlib: a 2D graphics environment. Comput Sci Eng 2007, 9:90-95.
  • [12]Oliphant TE: Python for scientific computing. Comput Sci Eng 2007, 9:10-20.
  • [13]Pedregosa F, Weiss R, Brucher M: Scikit-learn: machine learning in python. J Mach Learn Res 2011, 12:2825-2830.
  • [14]Helmus JJ, Jaroniec CP: Nmrglue: an open source Python package for the analysis of multidimensional NMR data. J Biomol NMR 2013, 55:355-367.
  • [15]Savorani F, Tomasi G, Engelsen SB: Icoshift: a versatile tool for the rapid alignment of 1D NMR spectra. J Magn Reson 2010, 202:190-202.
  • [16]Gansner E, North SC: An open graph visualization system and its applications to software engineering. Softw - Pract Exp 1999, 00:1-5.
  • [17]Haug K, Salek RM, Conesa P, Hastings J, de Matos P, Rijnbeek M, Mahendraker T, Williams M, Neumann S, Rocca-Serra P, Maguire E, González-Beltrán A, Sansone S-A, Griffin JL, Steinbeck C: MetaboLights–an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Res 2013, 41:D781-D786.
  • [18]Edgar R, Domrachev M, Lash AE: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002, 30:207-210.
  • [19]Trupp M, Altman T, Fulcher CA, Caspi R, Krummenacker M, Paley S, Karp PD: Beyond the genome ( BTG ) is a ( PGDB ) pathway genome databasets. HumanCyc 2010, 11:2010.
  • [20]Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M: KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 2012, 40:D109-D114.
  • [21]Bernard T, Bridge A, Morgat A, Moretti S, Xenarios I, Pagni M: Reconciliation of metabolites and biochemical reactions for metabolic networks. Brief Bioinform 2014, 15:123-135.
  • [22]Wu H, Southam AD, Hines A, Viant MR: High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Anal Biochem 2008, 372:204-212.
  • [23]Ludwig C, Easton J, Lodi A, Tiziani S, Manzoor S, Southam A, Byrne J, Bishop L, He S, Arvanitis T, Günther U, Viant M: Birmingham Metabolite Library: a publicly accessible database of 1-D 1H and 2-D 1H J-resolved NMR spectra of authentic metabolite standards (BML-NMR). Metabolomics 2012, 8:8-18.
  • [24]Tulpan D, Léger S, Belliveau L, Culf A, Čuperlović-Culf M: MetaboHunter: an automatic approach for identification of metabolites from 1H-NMR spectra of complex mixtures. BMC Bioinformatics 2011, 12:400. BioMed Central Full Text
  文献评价指标  
  下载次数:61次 浏览次数:36次