BMC Bioinformatics | |
Predicting HIV-1 broadly neutralizing antibody epitope networks using neutralization titers and a novel computational method | |
Mark C Evans1  Pham Phung1  Agnes C Paquet1  Anvi Parikh1  Christos J Petropoulos1  Terri Wrin1  Mojgan Haddad1  | |
[1] Monogram Biosciences Inc., 345 Oyster Point Blvd., South San Francisco, CA 94080, USA | |
关键词: Sequence and structure analysis; Structural mapping; Epitope networks; in-silico epitope mapping; Neutralization; Machine learning; Boosting algorithm; Bioinformatics algorithms; Thick patch analysis; HIV-1 antibody; | |
Others : 1087592 DOI : 10.1186/1471-2105-15-77 |
|
received in 2013-09-18, accepted in 2014-03-03, 发布年份 2014 | |
【 摘 要 】
Background
Recent efforts in HIV-1 vaccine design have focused on immunogens that evoke potent neutralizing antibody responses to a broad spectrum of viruses circulating worldwide. However, the development of effective vaccines will depend on the identification and characterization of the neutralizing antibodies and their epitopes. We developed bioinformatics methods to predict epitope networks and antigenic determinants using structural information, as well as corresponding genotypes and phenotypes generated by a highly sensitive and reproducible neutralization assay.
282 clonal envelope sequences from a multiclade panel of HIV-1 viruses were tested in viral neutralization assays with an array of broadly neutralizing monoclonal antibodies (mAbs: b12, PG9,16, PGT121 - 128, PGT130 - 131, PGT135 - 137, PGT141 - 145, and PGV04). We correlated IC50 titers with the envelope sequences, and used this information to predict antibody epitope networks. Structural patches were defined as amino acid groups based on solvent-accessibility, radius, atomic depth, and interaction networks within 3D envelope models. We applied a boosted algorithm consisting of multiple machine-learning and statistical models to evaluate these patches as possible antibody epitope regions, evidenced by strong correlations with the neutralization response for each antibody.
Results
We identified patch clusters with significant correlation to IC50 titers as sites that impact neutralization sensitivity and therefore are potentially part of the antibody binding sites. Predicted epitope networks were mostly located within the variable loops of the envelope glycoprotein (gp120), particularly in V1/V2. Site-directed mutagenesis experiments involving residues identified as epitope networks across multiple mAbs confirmed association of these residues with loss or gain of neutralization sensitivity.
Conclusions
Computational methods were implemented to rapidly survey protein structures and predict epitope networks associated with response to individual monoclonal antibodies, which resulted in the identification and deeper understanding of immunological hotspots targeted by broadly neutralizing HIV-1 antibodies.
【 授权许可】
2014 Evans et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150117022058743.pdf | 1942KB | download | |
Figure 5. | 118KB | Image | download |
Figure 4. | 126KB | Image | download |
Figure 3. | 101KB | Image | download |
Figure 2. | 214KB | Image | download |
Figure 1. | 130KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Burton DR, Stanfield RL, Wilson IA: Proc Natl Acad Sci U S A. 2005, 102(42):14943-14948.
- [2]Saphire EO, Montero M, Menendez A: J Mol Biol. 2007, 369:696-709.
- [3]Walker LM, Walker LM, Huber M, Doores KJ, Falkowska E, Pejchal R, Julien JP, Wang SK, Ramos A, Chan-Hui PY, Moyle M, Mitcham JL, Hammond PW, Olsen OA, Phung P, Fling S, Wong CH, Phogat S, Wrin T, Simek MD, Koff WC, Wilson IA, Burton DR, Poignard P, Protocol G Principal Investigators: Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 2011, 477:466.
- [4]Walker LM, Phogat SK, Chan-Hui PY, Wagner D, Phung P, Goss JL, Wrin T, Simek MD, Fling S, Mitcham JL, Lehrman JK, Priddy FH, Olsen OA, Frey SM, Hammond PW, Kaminsky S, Zamb T, Moyle M, Koff WC, Poignard P, Burton DR, Protocol G Principal Investigators: Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science (New York, NY) 2009, 326:285.
- [5]Burton DR, Weiss RA: IDS/HIV. A boost for HIV vaccine design. Science 2010, 329:770-773.
- [6]Virgin HW, Walker BD: Immunology and the elusive AIDS vaccine. Nature 2010, 464(7286):224-231.
- [7]Flynn NM, Forthal DN, Harro CD, Judson FN, Mayer KH, Para MF: Placebo-controlled phase 3 trial of a recombinant glycoprotein 120 vaccine to prevent HIV-1 infection. J Infect Dis 2005, 191(5):654-655.
- [8]Pitisuttithum P, Gilbert P, Gurwith M, Heyward W, Martin M, van Griensven F, Hu D, Tappero JW, Choopanya K: Randomized, double-blind, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok, Thailand. J Infect Dis 2006, 194(12):1661-1671.
- [9]Richman DD, Wrin T, Little SJ, Petropoulos CJ: Rapid evolution of the neutralizing antibody response to HIV type 1 infection. Proc Natl Acad Sci USA 2003, 100(7):4144-4149.
- [10]Wei X, Decker JM, Wang S, Hui H, Kappes JC, Wu X, Salazar-Gonzalez JF, Salazar MG, Kilby JM, Saag MS, Komarova NL, Nowak MA, Hahn BH, Kwong PD, Shaw GM: Antibody neutralization and escape by HIV-1. Nature 2003, 422(6929):307-312.
- [11]M B-P, Morgand M, Moreau A, Jestin P, Simonnet C, Tran L, Goujard C, Meyer L, Barin F, Braibant M: Evidence for a continuous drift of the HIV-1 Species towards higher resistance to neutralizing antibodies over the course of the epidemic. PLoS Pathog 2013, 9(7):e1003477.
- [12]Jardine J, Julien J-P, Menis S, Ota T, Kalyuzhniy O, McGuire A, Sok D, Huang P-S, MacPherson S, Jones M, Nieusma T, Mathison J, Baker D, Ward AB, Burton DR, Stamatatos L, Nemazee D, Wilson IA, Schief WR: Rational HIV immunogen design to target specific Germline B cell receptors. Science 2013, 340(6133):711-716.
- [13]Van Regenmortel MH: Basic research in HIV vaccinology is hampered by reductionist thinking. Front Immunol 2012, 3:194.
- [14]Binley JM, Wrin T, Korber B, Zwick MB, Wang M, Chappey C, Stiegler G, Kunert R, Zolla-Pazner S, Katinger H, Petropoulos CJ, Burton DR: Comprehensive cross-clade neutralization analysis of a panel of anti-human immunodeficiency virus type 1 monoclonal antibodies. J Virol 2004, 78(23):13232-13252.
- [15]Pantophlet R, Saphire EO, Poignard P, Parren PWHI, Wilson IA, Burton DR: Fine mapping of the interaction of neutralizing and nonneutralizing monoclonal antibodies with the CD4 binding site of human immunodeficiency virus type 1 gp120. J Virol 2003, 77(1):642-658.
- [16]Evans MC: Recent advances in immunoinformatics: application of in silico tools to drug development. Curr Opin Drug Discov Devel 2008, 11(2):233-241.
- [17]EL-Manzalawy Y, Honavar V: Recent advances in B-cell epitope prediction methods. Immunome Res 2010, 6(Suppl 2):S2. BioMed Central Full Text
- [18]Liu R, Hu J: Prediction of Discontinuous B-Cell Epitopes Using Logistic Regression and Structural Information. J Proteomics Bioinform 2011., 04doi:10.4172/jpb.1000161
- [19]Rubinstein ND, Mayrose I, Pupko T: A machine-learning approach for predicting B-cell epitopes. Mol Immunol 2009, 46(5):840-847.
- [20]Sun J, Wu D, Xu T, Wang X, Xu X, Tao L, Li Y, Cao Z: SEPPA: a computational server for spatial epitope prediction of protein antigens. Nucleic Acids Res 2009, 37(Suppl 2):W612-W616.
- [21]Soga S, Kuroda D, Shirai H, Kobori M, Hirayama N: Use of amino acid composition to predict epitope residues of individual antibodies. Protein Eng Des Sel 2010, 23(6):441-448.
- [22]Zhao L, Li J: Mining for the antibody-antigen interacting associations that predict the B cell epitopes. BMC Struct Biol 2010, 10(Suppl 1):S6. BioMed Central Full Text
- [23]Bublil EM, Freund NT, Mayrose I, Penn O, Roitburd-Berman A, Rubinstein ND, Pupko T, Gershoni JM: Stepwise prediction of conformational discontinuous B-cell epitopes using the Mapitope algorithm. Proteins 2007, 68(1):294-304.
- [24]Chen WH, Sun PP, Lu Y, Guo WW, Huang YX, Ma ZQ: MimoPro: a more efficient Web-based tool for epitope prediction using phage display libraries. BMC Bioinformatics 2011, 12:199. BioMed Central Full Text
- [25]Mayrose I, Shlomi T, Rubinstein ND, Gershoni JM, Ruppin E, Sharan R, Pupko T: Epitope mapping using combinatorial phage-display libraries: a graph-based algorithm. Nucleic Acids Res 2007, 35(1):69-78.
- [26]Moreau V, Granier C, Villard S, Laune D, Molina F: Discontinuous epitope prediction based on mimotope analysis. Bioinformatics (Oxford, England) 2006, 22(9):1088-1095.
- [27]Falkowska E, Ramos A, Feng Y, Zhou T, Moquin S, Walker LM, Wu X, Seaman MS, Wrin T, Kwong PD: PGV04, an HIV-1 gp120 CD4 binding site antibody, is broad and potent in neutralization but does not induce conformational changes characteristic of CD4. J Virol 2012, 86(8):4394-4403.
- [28]Jones S, Thornton JM: Prediction of protein-protein interaction sites using patch analysis. J Mol Biol 1997, 272(1):133-143.
- [29]Murakami Y, Jones S: SHARP2: protein-protein interaction predictions using patch analysis. Bioinformatics 2006, 22(14):1794-1795.
- [30]Zhang W, Xiong Y, Zhao M, Zou H, Ye X, Liu J: Prediction of conformational B-cell epitopes from 3D structures by random forest with a distance-based feature. BMC Bioinformatics 2011, 12(1):341. BioMed Central Full Text
- [31]Kabsch W, Sander C: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983, 22:2577-2637.
- [32]Lee B, Richards FM: The interpretation of protein structures: estimation of static accessibility. J Mol Biol 1971, 55(3):379-400.
- [33]Singh H, Ahmad S: Context dependent reference states of solvent accessibility derived from native protein structures and assessed by predictability analysis. BMC Struct Biol 2009, 9:25. BioMed Central Full Text
- [34]Chothia C: The nature of the accessible and buried surfaces in proteins. J Mol Biol 1976, 105(1):1-12.
- [35]Janin J, Wodak S: Conformation of amino acid side-chains in proteins. J Mol Biol 1978, 125(3):357-386.
- [36]Amitai G, Shemesh A, Sitbon E, Shklar M, Netanely D, Venger I, Pietrokovski S: Network analysis of protein structures identifies functional residues. J Mol Biol 2004, 344:1135-1146.
- [37]Doncheva NT, Klein K, Domingues FS, Albrecht M: Analyzing and visualizing residue networks of protein structures. Trends Biochem Sci 2011, 36(4):179-182.
- [38]Song J, Tan H, Mahmood K, Law RHP, Buckle AM, Webb GI, Akutsu T, Whisstock JC: Prodepth: predict residue depth by support vector regression approach from protein sequences only. PLoS ONE 2009, 4(9):e7072.
- [39]Pintar A, Carugo O, Pongor S: Atom depth as a descriptor of the protein interior. Biophys J 2003, 84(4):2553-2561.
- [40]Simek MD, Rida W, Priddy FH, Pung P, Carrow E, Laufer DS, Lehrman JK, Boaz M, Tarragona-Fiol T, Miiro G, Birungi J, Pozniak A, McPhee DA, Manigart O, Karita E, Inwoley A, Jaoko W, Dehovitz J, Bekker LG, Pitisuttithum P, Paris R, Walker LM, Poignard P, Wrin T, Fast PE, Burton DR, Koff WC: Human immunodeficiency virus type 1 elite neutralizers: individuals with broad and potent neutralizing activity identified by using a high-throughput neutralization assay together with an analytical selection algorithm. J Virol 2009, 83(14):7337-7348.
- [41]Stamatatos L, Morris L, Burton DR, Mascola JR, Morris L, Burton DR, Mascola JR: Neutralizing antibodies generated during natural HIV-1 infection: good news for an HIV-1 vaccine? Nat Med 2009, 15(8):866-870.
- [42]Gnanakaran S, Daniels MG, Bhattacharya T, Lapedes AS, Sethi A, Li M, Tang H, Greene K, Gao H, Haynes BF, Cohen MS, Shaw GM, Seaman MS, Kumar A, Gao F, Montefiori DC, Korber B: Genetic signatures in the envelope glycoproteins of HIV-1 that associate with broadly neutralizing antibodies. PLoS Comput Biol 2010, 6(10):e1000955.
- [43]Nakamura GR, Fonseca DP, O'Rourke SM, Vollrath AL, Berman PW: Monoclonal antibodies to the V2 domain of MN-rgp120: fine mapping of epitopes and inhibition of alpha4beta7 binding. PLoS One 7(6):e39045.
- [44]Larkin M, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG: Clustal W and Clustal X version 2.0. Bioinformatics (Oxford, England) 2007, 23(21):2947-2948.
- [45]Eddy SR: Hidden Markov models. Curr Opin Struct Biol 1996, 6(3):361-365.
- [46]Nielsen M, Lundegaard C, Lund O, Petersen TN: CPHmodels-3.0--remote homology modeling using structure-guided sequence profiles. Nucleic Acids Res 2010, 38(Web Server issue):W576-581.
- [47]Ihaka R, Gentleman R: R: A language for data analysis and graphics. J Comput Graph Stat 1996, 5:299-314.
- [48]Dimitriadou E, Hornik K, Leisch F, Meyer D, Weingessel A, Wein TU: e1071: Misc functions of the Department of Statistics, TU Wien. TU Wein; 2010.
- [49]Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE: UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 2004, 25(13):1605-1612.
- [50]Pancera M, Shahzad-Ul-Hussan S, Doria-Rose NA, McLellan JS, Bailer RT, Dai K, Loesgen S, Louder MK, Staupe RP, Yang Y, Zhang B, Parks R, Eudailey J, Lloyd KE, Blinn J, Alam SM, Haynes BF, Amin MN, Wang LX, Burton DR, Koff WC, Nabel GJ, Mascola JR, Bewley CA, Kwong PD: Structural basis for diverse N-glycan recognition by HIV-1-neutralizing V1-V2-directed antibody PG16. Nat Struct Mol Biol 2013, 20(7):804-813.
- [51]McLellan JS, Pancera M, Carrico C, Gorman J, Julien JP, Khayat R, Louder R, Pejchal R, Sastry M, Dai K, O'Dell S, Patel N, Shahzad-ul-Hussan S, Yang Y, Zhang B, Zhou T, Zhu J, Boyington JC, Chuang GY, Diwanji D, Georgiev I, Kwon YD, Lee D, Louder MK, Moquin S, Schmidt SD, Yang ZY, Bonsignori M, Crump JA, Kapiga SH, et al.: Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature 2011, 480(7377):336-343.
- [52]Travers SAA, Tully DC, McCormack GP, Fares MA: A study of the coevolutionary patterns operating within the env gene of the HIV-1 group M subtypes. Mol Biol Evol 2007, 24(12):2787-2801.
- [53]Changela A, Wu X, Yang Y, Zhang B, Zhu J, Nardone GA, O'Dell S, Pancera M, Gorny MK, Phogat S, Robinson JE, Stamatatos L, Zolla-Pazner S, Mascola JR, Kwong PD: Crystal structure of human antibody 2909 reveals conserved features of quaternary structure-specific antibodies that potently neutralize HIV-1. J Virol 2011, 85(6):2524-2535.
- [54]Wu X, Yang ZY, Li Y, Hogerkorp CM, Schief WR, Seaman MS, Zhou T, Schmidt SD, Wu L, Xu L, Longo NS, McKee K, O'Dell S, Louder MK, Wycuff DL, Feng Y, Nason M, Doria-Rose N, Connors M, Kwong PD, Roederer M, Wyatt RT, Nabel GJ, Mascola JR: Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 2010, 329(5993):856-861.
- [55]Julien JP, Sok D, Khayat R, Lee JH, Doores KJ, Walker LM, Ramos A, Diwanji DC, Pejchal R, Cupo A, Katpally U, Depetris RS, Stanfield RL, McBride R, Marozsan AJ, Paulson JC, Sanders RW, Moore JP, Burton DR, Poignard P, Ward AB, Wilson IA: Broadly neutralizing antibody PGT121 allosterically modulates CD4 binding via recognition of the HIV-1 gp120 V3 base and multiple surrounding glycans. PLoS Pathog 2013, 9(5):e1003342.