期刊论文详细信息
BMC Bioinformatics
Efficient deformation algorithm for plasmid DNA simulations
Adriano N Raposo1  Abel JP Gomes1 
[1] Instituto de Telecomunicações, Universidade da Beira Interior, Covilhã, Portugal, Av. Marquês Dávila e Bolama, 6200-001 Covilhã, Portugal
关键词: Monte Carlo;    Simulation;    Plasmid DNA;   
Others  :  1086059
DOI  :  10.1186/1471-2105-15-301
 received in 2013-10-19, accepted in 2014-09-09,  发布年份 2014
PDF
【 摘 要 】

Background

Plasmid DNA molecules are closed circular molecules that are widely used in life sciences, particularly in gene therapy research. Monte Carlo methods have been used for several years to simulate the conformational behavior of DNA molecules. In each iteration these simulation methods randomly generate a new trial conformation, which is either accepted or rejected according to a criterion based on energy calculations and stochastic rules. These simulation trials are generated using a method based on crankshaft motion that, apart from some slight improvements, has remained the same for many years.

Results

In this paper, we present a new algorithm for the deformation of plasmid DNA molecules for Monte Carlo simulations. The move underlying our algorithm preserves the size and connectivity of straight-line segments of the plasmid DNA skeleton. We also present the results of three experiments comparing our deformation move with the standard and biased crankshaft moves in terms of acceptance ratio of the trials, energy and temperature evolution, and average displacement of the molecule. Our algorithm can also be used as a generic geometric algorithm for the deformation of regular polygons or polylines that preserves the connections and lengths of their segments.

Conclusion

Compared with both crankshaft moves, our move generates simulation trials with higher acceptance ratios and smoother deformations, making it suitable for real-time visualization of plasmid DNA coiling. For that purpose, we have adopted a DNA assembly algorithm that uses nucleotides as building blocks.

【 授权许可】

   
2014 Raposo and Gomes; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113182836692.pdf 3173KB PDF download
Figure 16. 60KB Image download
Figure 15. 66KB Image download
Figure 14. 75KB Image download
Figure 13. 51KB Image download
Figure 12. 38KB Image download
Figure 11. 55KB Image download
Figure 10. 55KB Image download
Figure 9. 39KB Image download
Figure 8. 75KB Image download
Figure 7. 50KB Image download
Figure 6. 68KB Image download
Figure 5. 43KB Image download
Figure 4. 56KB Image download
Figure 3. 48KB Image download
Figure 2. 42KB Image download
Figure 1. 30KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

【 参考文献 】
  • [1]Verdier P, Stockmayer W: Monte Carlo calculations on the dynamics of polymers in dilute solution. J Chem Phys 1962, 36(1):227-235.
  • [2]Hilhorst H, Deutch J: Analysis of monte carlo results on the kinetics of lattice polymer chains with excluded volume. J Chem Phys 1975, 63(12):5153-5161.
  • [3]Binder K: Applications of Monte Carlo methods to statistical physics. Rep Prog Phys 1997, 60(5):487-502.
  • [4]Klenin K, Vologodskii A, Anshelevich V, Dykhne A, Frank-Kamenetskii M: Computer simulation of DNA supercoiling. J Mol Biol 1991, 63(3):413-419.
  • [5]Vologodskii AV, Levene SD, Klenin KV, Frank-Kamenetskii M, Cozzarelli NR: Conformational and thermodynamic properties of supercoiled DNA. J Mol Biol 1992, 227(4):1224-1243.
  • [6]Earl DJ, Deem MW: Monte Carlo Simulations. In Molecular Modeling of Proteins. Methods in Molecular Biology. Edited by Kukol A. New York City, USA: Humana Press; 2008:25-36.
  • [7]Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E: Equation of state calculations by fast computing machines. J Chem Phys 1953, 21:1087-1092.
  • [8]Frank-Kamenetskii MD, Lukashin AV, Vologodskii AV: Statistical mechanics and topology of polymer chains. Nature 1975, 258(5534):398-402.
  • [9]Vologodskii AV, Anshelevich VV, Lukashin AV, Frank-Kamenetskii MD: Statistical mechanics of supercoils and the torsional stiffness of the DNA double helix. Nature 1979, 280(5720):294-298.
  • [10]Le Bret M: Monte Carlo computation of the supercoiling energy, the sedimentation constant, and the radius of gyration of unknotted and knotted circular DNA. Biopolymers 1980, 19(3):619-637.
  • [11]Frank-Kamenetski MD, Vologodski AV: Topological aspects of the physics of polymers: the theory and its biophysical applications. Soviet Phys Uspekhi 1981, 24(8):679.
  • [12]Vologodskii A: Monte Carlo simulation of DNA topological properties. In Topology in Molecular Biology. Biological and Medical Physics, Biomedical Engineering. Edited by Monastyrsky M. Berlin: Springer; 2007:23-41.
  • [13]Vologodskii A, Rybenkov VV: Simulation of DNA catenanes. Phys Chem Chem Phys 2009, 11:10543-10552.
  • [14]Gebe JA, Allison SA, Clendenning JB, Schurr JM: Monte Carlo simulations of supercoiling free energies for unknotted and trefoil knotted DNAs. Biophys J 1995, 68(2):619-633.
  • [15]Vologodskii AV, Marko JF: Extension of torsionally stressed DNA by external force. Biophys J 1997, 73(1):123-132.
  • [16]Kundu S, Lahiri A, Thakur AR: Denaturation of supercoiled DNA: a Monte Carlo study. Biophys Chem 1998, 75(3):177-186.
  • [17]Podtelezhnikov AA, Cozzarelli NR, Vologodskii AV: Equilibrium distributions of topological states in circular DNA: interplay of supercoiling and knotting. Proc Natl Acad Sci USA 1999, 96(23):12974-12979.
  • [18]Yang Z, Haijun Z, Zhong-Can OY: Monte Carlo implementation of supercoiled double-stranded DNA. Biophys J 2000, 78(4):1979-1987.
  • [19]Fujimoto BS, Schurr JM: Monte Carlo simulations of supercoiled DNAs confined to a plane. Biophys J 2002, 82(2):944-962.
  • [20]Fujimoto BS, Brewood GP, Schurr JM: Torsional rigidities of weakly strained DNAs. Biophys J 2006, 91(11):4166-4179.
  • [21]Burnier Y, Dorier J, Stasiak A: DNA supercoiling inhibits DNA knotting. Nucleic Acids Res 2008, 36(15):4956-4963.
  • [22]Zheng G, Czapla L, Srinivasan AR, Olson WK: How stiff is DNA? Phys Chem Chem Phys 2010, 12(6):1399-1406.
  • [23]Thumm W, Seidl A, Hinz HJ: Energy-structure correlations of plasmid DNA in different topological forms. Nucleic Acids Res 1988, 16(24):11737-11757.
  • [24]Bates AD, Maxwell A: DNA Topology. Oxford Biosciences. Oxford, England: Oxford University Press; 2005.
  • [25]Klenin K, Langowski J: Computation of writhe in modeling of supercoiled DNA. Biopolymers 2000, 54(5):307-317.
  • [26]Harris BA, Harvey SC: Program for analyzing knots represented by polygonal paths. J Comput Chem 1999, 20(8):813-818.
  • [27]Raposo A, Gomes A: 3D molecular assembling of B-DNA sequences using nucleotides as building blocks. Graph Models 2012, 74(4):244-254.
  • [28]Raposo A, Queiroz J, Gomes A: Triangulation of molecular surfaces using an isosurface continuation algorithm. In Proceedings of the 2009 International Conference on Computational Science and Its Applications. ICCSA ’09. Washington, DC, USA: IEEE Computer Society; 2009:145-153.
  • [29]Heywood J: Internal Combustion Engine Fundamentals. New York, USA: McGraw-Hill, Inc.; 1988.
  • [30]Boltzmann L: Lectures on Gas Theory. Oakland, California, USA: University of California Press; 1964.
  • [31]Mauri R: Microscopic reversibility. In Non-Equilibrium Thermodynamics in Multiphase Flows. Soft and Biological Matter. Dordrecht, Netherlands: Springer; 2013:13-24.
  • [32]Wegscheider R: Über simultane Gleichgewichte und die Beziehungen zwischen Thermodynamik und Reactionskinetik homogener Systeme. Monatshefte für Chemie/Chem Mon 1901, 32(8):849-906.
  • [33]Kummerle EA, Pomplun E: A computer-generated supercoiled model of the pUC19 plasmid. Eur Biophys J 2005, 34(1):13-18.
  • [34]Bauer WR: Structure and reactions of closed duplex DNA. Annu Rev Biophys Bioeng 1978, 7:287-313.
  • [35]LaMothe A: Tricks of the Windows Game Programming Gurus. Indianapolis, IN, USA: Sams; 2002.
  • [36]Yanisch-Perron C, Vieira J, Messing J: Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 1985, 33(1):103-119.
  文献评价指标  
  下载次数:480次 浏览次数:74次