BMC Bioinformatics | |
Improving the scaling normalization for high-density oligonucleotide GeneChip expression microarrays | |
Chao Lu1  | |
[1] Microarray Facility, The Centre for Applied Genomics, The Hospital for Sick Children, 555 University Avenue, Elm Wing Room 10104, Toronto, Ontario M5G 1X8, Canada | |
关键词: scaling; GeneChip; oligonucleotide; RNA; DNA; gene expression; normalization; Microarray; | |
Others : 1171664 DOI : 10.1186/1471-2105-5-103 |
|
received in 2003-07-17, accepted in 2004-07-29, 发布年份 2004 | |
【 摘 要 】
Background
Normalization is an important step for microarray data analysis to minimize biological and technical variations. Choosing a suitable approach can be critical. The default method in GeneChip expression microarray uses a constant factor, the scaling factor (SF), for every gene on an array. The SF is obtained from a trimmed average signal of the array after excluding the 2% of the probe sets with the highest and the lowest values.
Results
Among the 76 U34A GeneChip experiments, the total signals on each array showed 25.8% variations in terms of the coefficient of variation, although all microarrays were hybridized with the same amount of biotin-labeled cRNA. The 2% of the probe sets with the highest signals that were normally excluded from SF calculation accounted for 34% to 54% of the total signals (40.7% ± 4.4%, mean ± sd). In comparison with normalization factors obtained from the median signal or from the mean of the log transformed signal, SF showed the greatest variation. The normalization factors obtained from log transformed signals showed least variation.
Conclusions
Eliminating 40% of the signal data during SF calculation failed to show any benefit. Normalization factors obtained with log transformed signals performed the best. Thus, it is suggested to use the mean of the logarithm transformed data for normalization, rather than the arithmetic mean of signals in GeneChip gene expression microarrays.
【 授权许可】
2004 Lu; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150420013616828.pdf | 363KB | download | |
Figure 1. | 34KB | Image | download |
【 图 表 】
Figure 1.
【 参考文献 】
- [1]Lipshutz RJ, Fodor SP, Gingeras TR, Lockhart DJ: High density synthetic oligonucleotide arrays. Nat Genet 1999, 21:20-24.
- [2]Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang C, Kobayashi M, Horton H, Brown EL: Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 1996, 14:1675-1680.
- [3]Affymetrix: GeneChip Expression Analysis: Data Analysis Fundamentals. [http://www.affymetrix.com/] webcite
- [4]Affymetrix: Microarray Suite 5.0 User's Guide. 2002 edition. Santa Clara, CA, USA, Affymetrix Inc; 2001.
- [5]Hubbell E, Liu WM, Mei R: Robust estimators for expression analysis. Bioinformatics 2002, 18:1585-1592.
- [6]Li C, Wong WH: Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci U S A 2001, 98:31-36.
- [7]Liu WM, Mei R, Di X, Ryder TB, Hubbell E, Dee S, Webster TA, Harrington CA, Ho MH, Baid J, Smeekens SP: Analysis of high density expression microarrays with signed-rank call algorithms. Bioinformatics 2002, 18:1593-1599.
- [8]Sasik R., Calvo, E., and Corbeil, J.: Statistical analysis of high-density oligonucleotide arrays: a multiplicative noise model. Bioinformatics 2002, 18:1633-1640.
- [9]Naef F, Hacker CR, Patil N, Magnasco M: Empirical characterization of the expression ratio noise structure in high-density oligonucleotide arrays. Genome Biol 2002, 3:RESEARCH0018. BioMed Central Full Text
- [10]Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP: Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 2003, 31:e15.
- [11]Affymetrix: GeneChip Operating Software: User's Guide. [http://www.affymetrix.com/index.affx] webcitehttp://wwwaffymetrixcom/ 1.0th edition.
- [12]Quackenbush J: Microarray data normalization and transformation. Nat Genet 2002, 32(Suppl):496-501.
- [13]Culhane AC, Perriere G, Considine EC, Cotter TG, Higgins DG: Between-group analysis of microarray data. Bioinformatics 2002, 18:1600-1608.
- [14]Durbin BP, Hardin JS, Hawkins DM, Rocke DM: A variance-stabilizing transformation for gene-expression microarray data. Bioinformatics 2002, 18(Suppl 1):S105-10.
- [15]Kepler TB, Crosby L, Morgan KT: Normalization and analysis of DNA microarray data by self-consistency and local regression. Genome Biol 2002, 3:RESEARCH0037. BioMed Central Full Text
- [16]Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP: Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 2002, 30:e15.
- [17]Schadt EE, Li C, Ellis B, Wong WH: Feature extraction and normalization algorithms for high-density oligonucleotide gene expression array data. J Cell Biochem Suppl 2001, 37(Suppl):120-125.
- [18]Hill AA, Brown EL, Whitley MZ, Tucker-Kellogg G, Hunter CP, Slonim DK: Evaluation of normalization procedures for oligonucleotide array data based on spiked cRNA controls. Genome Biol 2001, 2:RESEARCH0055. BioMed Central Full Text
- [19]Yang IV, Chen E, Hasseman JP, Liang W, Frank BC, Wang S, Sharov V, Saeed AI, White J, Li J, Lee NH, Yeatman TJ, Quackenbush J: Within the fold: assessing differential expression measures and reproducibility in microarray assays. Genome Biol 2002, 3:research0062.
- [20]Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003, 4:249-264.
- [21]Li C, Hung Wong W: Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. Genome Biol 2001, 2:RESEARCH0032.
- [22]Bolstad BM, Irizarry RA, Astrand M, Speed TP: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003, 19:185-193.
- [23]Geller SC, Gregg JP, Hagerman P, Rocke DM: Transformation and normalization of oligonucleotide microarray data. Bioinformatics 2003, 19:1817-1823.
- [24]Stuart RO, Bush KT, Nigam SK: Changes in global gene expression patterns during development and maturation of the rat kidney. Proc Natl Acad Sci U S A 2001, 98:5649-5654.
- [25]Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 2001, 98:5116-5121.
- [26]Knudtson KL, Griffin C, Iacobas DA, Johnson K, Khitrov G, Levy S, Massimi A, Nowak N, Viale A, Grill G, Brooks AI: A current profile of microarray laboratories: the 2002-2003 ABRF microarray research group survey of laboratories using microarray technologies. http://wwwabrforg
- [27]Tseng GC, Oh MK, Rohlin L, Liao JC, Wong WH: Issues in cDNA microarray analysis: quality filtering, channel normalization, models of variations and assessment of gene effects. Nucleic Acids Res 2001, 29:2549-2557.
- [28]Hoffmann R, Seidl T, Dugas M: Profound effect of normalization on detection of differentially expressed genes in oligonucleotide microarray data analysis. Genome Biol 2002, 3:RESEARCH0033.
- [29]Affymetrix: GeneChip Expression Analysis: Technical Manual. [http://www.affymetrix.com/] webcitehttp://wwwaffymetrixcom/