期刊论文详细信息
BMC Bioinformatics
Automated interpretation of 3D laserscanned point clouds for plant organ segmentation
Mirwaes Wahabzada3  Stefan Paulus1  Kristian Kersting2  Anne-Katrin Mahlein3 
[1] IGG-Geodesy, University of Bonn, Nussallee 17, Bonn 53115, Germany
[2] Computer Science Department, TU Dortmund University, Otto-Hahn-Str. 14, Dortmund 44227, Germany
[3] INRES-Phytomedicine, University of Bonn, Meckenheimer Allee 166a, Bonn 53115, Germany
关键词: Plant phenotyping;    High-throughput;    3D-laserscanning;    Clustering;    Automatic segmentation;   
Others  :  1230253
DOI  :  10.1186/s12859-015-0665-2
 received in 2015-01-28, accepted in 2015-07-08,  发布年份 2015
【 摘 要 】

Background

Plant organ segmentation from 3D point clouds is a relevant task for plant phenotyping and plant growth observation. Automated solutions are required to increase the efficiency of recent high-throughput plant phenotyping pipelines. However, plant geometrical properties vary with time, among observation scales and different plant types. The main objective of the present research is to develop a fully automated, fast and reliable data driven approach for plant organ segmentation.

Results

The automated segmentation of plant organs using unsupervised, clustering methods is crucial in cases where the goal is to get fast insights into the data or no labeled data is available or costly to achieve. For this we propose and compare data driven approaches that are easy-to-realize and make the use of standard algorithms possible. Since normalized histograms, acquired from 3D point clouds, can be seen as samples from a probability simplex, we propose to map the data from the simplex space into Euclidean space using Aitchisons log ratio transformation, or into the positive quadrant of the unit sphere using square root transformation. This, in turn, paves the way to a wide range of commonly used analysis techniques that are based on measuring the similarities between data points using Euclidean distance. We investigate the performance of the resulting approaches in the practical context of grouping 3D point clouds and demonstrate empirically that they lead to clustering results with high accuracy for monocotyledonous and dicotyledonous plant species with diverse shoot architecture.

Conclusion

An automated segmentation of 3D point clouds is demonstrated in the present work. Within seconds first insights into plant data can be deviated – even from non-labelled data. This approach is applicable to different plant species with high accuracy. The analysis cascade can be implemented in future high-throughput phenotyping scenarios and will support the evaluation of the performance of different plant genotypes exposed to stress or in different environmental scenarios.

【 授权许可】

   
2015 Wahabzada et al.

附件列表
Files Size Format View
Fig. 5. 57KB Image download
Fig. 4. 36KB Image download
Fig. 3. 76KB Image download
Fig. 2. 82KB Image download
Fig. 1. 62KB Image download
Fig. 5. 57KB Image download
Fig. 4. 36KB Image download
Fig. 3. 76KB Image download
Fig. 2. 82KB Image download
Fig. 1. 62KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Fiorani F, Rascher U, Jahnke S, Schurr U. Imaging plants dynamics in heterogenic environments. Curr Opin Biotechnol. 2012; 23(2):227-35.
  • [2]Sozzani R, Busch W, Spalding EP, Benfey PN. Advanced imaging techniques for the study of plant growth and development. Trends Plant Sci. 2014; 19(5):304-10.
  • [3]Mahlein AK, Oerke EC, Steiner U, Dehne HW. Recent advances in sensing plant diseases. Eur J Plant Pathol. 2012; 133:197-209.
  • [4]Berdugo CA, Zito R, Paulus S, Mahlein AK. Fusion of sensor data for the detection and differentiation of plant diseases in cucumber. Plant Pathol. 2014; 63(6):1344-56.
  • [5]Furbank RT, Tester M. Phenomics–technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 2011; 16(12):635-44.
  • [6]Wahabzada M, Mahlein AK, Bauckhage C, Steiner U, Oerke EC, Kersting K. Metro maps of plant disease dynamics: Automated mining of differences using hyperspectral images. PLoS ONE. 2015; 10(1):e0116902.
  • [7]Kuska M, Wahabzada M, Leucker M, Dehne HW, Kersting K, Oerke EC, et al. Hyperspectral phenotyping on the microscopic scale: towards automated characterization of plant-pathogen interactions. Plant Methods. 2015; 11(1):28. ISSN 1746-4811, doi10.1186/s13007-015-0073-7,. http://www. plantmethods.com/content/11/1/28 webcite
  • [8]Paulus S, Dupuis J, Mahlein AK, Kuhlmann H. Surface feature based classification of plant organs from 3D laserscanned point clouds for plant phenotyping. BMC Bioinf. 2013; 14(1):238. BioMed Central Full Text
  • [9]Frasson RPdM, Krajewski WF. Three-dimensional digital model of a maize plant. Agric Forest Meteorology. 2010; 150(3):478-88.
  • [10]Paulus S, Schumann H, Leon J, Kuhlmann H. A high precision laser scanning system for capturing 3D plant architecture and analysing growth of cereal plants. Biosystems Engineering. 2014; 121:1-11.
  • [11]Paproki A, Sirault X, Berry S, Furbank R, Fripp J. A novel mesh processing based technique for 3D plant analysis. BMC Plant Biol. 2012; 12(1):63. BioMed Central Full Text
  • [12]Behley J, Kersting K, Schulz D, Steinhage V, Cremers AB. Learning to hash logistic regression for fast 3D scan point classification. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan: 2010. p. 5960–5.
  • [13]Vapnik NV. Statistical Learning Theory. Wiley, New York; 1998. ISBN 0471030031-, http://www. zentralblatt-math.org/zmath/en/search/?an=0935.62007
  • [14]Aitchison J. The statistical analysis of compositional data. J R Stat Soc. 1982; 44(2):139-77.
  • [15]Aitchison J. On criteria for measures of compositional difference. Math Geol. 1992; 24(4):365-79.
  • [16]Aitchison J, Barcelo-Vidal C, Martin-Fernandez JA, Pawlowsky-Glahn V. Logratio analysis and compositional distance. Mathematical Geology. 2000; 32(3):271-5.
  • [17]Chaudhuri K, McGregor A. Finding metric structure in information theoretic clustering. In: Proceedings of the Conference on Learning Theory (COLT), Helsinki, Finland: 2008. p. 391–402.
  • [18]Thurau C, Kersting K, Wahabzada M, Bauckhage C. Convex non-negative matrix factorization for massive datasets. Knowledge Inf Syst. 2011; 29(2):457-78.
  • [19]Thurau C, Kersting K, Wahabzada M, Bauckhage C. Descriptive matrix factorization for sustainability: Adopting the principle of opposites. J Data Min Knowledge Discovery. 2012; 24(2):325-54.
  • [20]Kersting K, Wahabzada M, Thurau C, Bauckhage C. Hierarchical convex NMF for clustering massive data. In: Proceedings of the 2nd Asian Conference on Machine Learning (ACML), Tokyo, Japan, JMLR Workshop and Conference Proceedings, vol. 13. JMLR.org: 2010. p. 253–68.
  • [21]Yan D, Huang L, Jordan MI. Fast approximate spectral clustering. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), Paris, France. Paris, France: 2009. p. 907–16.
  • [22]Rusu RB, Holzbach A, Blodow N, Beetz M. Fast geometric point labeling using conditional random fields. In: Proceedings of the 22nd IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) St. Louis, MO, USA: Oct 2009. p. 7–12. ISBN 978-1-4244-3803-7.
  • [23]Rusu RB, Marton ZC, Blodow N, Dolha M, Beetz M. Towards 3D point cloud based object maps for household environments. Robotics and Autonomous Systems. 2008; 56(11):927-41.
  • [24]Dupuis J, Paulus S, Behmann J, Plümer L, Kuhlmann H. A multi-resolution approach for an automated fusion of different low-cost 3D sensors. Sensors. 2014; 14:7563-79.
  • [25]Paulus S, Dupuis J, Riedel S, Kuhlmann H. Automated analysis of barley organs using 3D laser scanning - an approach for high throughput phenotyping. Sensors. 2014; 14(7):12670-86.
  • [26]Rusu RB, Blodow N, Beetz M. Fast point feature histograms (FPFH) for 3D registration. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan: May 2009. p. 3212–17. ISBN 978-1-4244-2788-8.
  • [27]Bishop CM. Pattern Recognition and Machine Learning. Springer, New York; 2006. ISBN 0387310738
  • [28]Wahl E, Hillenbrand U, Hirzinger G. Surflet-pair-relation histograms: a statistical 3D-shape representation for rapid classification. In: Proceedings of Fourth International Conference on 3-D Digital Imaging and Modeling (3DIM), Banff, Canada: 2003. p. 474–81.
  • [29]Apache Software Foundation. Apache Mahout: Scalable machine-learning and data-mining library.http://mahout.apache.org.
  • [30]Rusu RB, Marton ZC, Blodow N, Beetz M. Persistent point feature histograms for 3D point clouds. In: Proceedings of the 10th International Conference on Intelligent Autonomous Systems (IAS), Baden-Baden, Germany: 2008. p. 119–28.
  • [31]Vajda I. On metric divergences of probability measures. Kibernetika. 2009; 45(6):885-900.
  • [32]Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueras G, Barcelo-Vidal C. Isometric logratio transformations for compositional data analysis. Math Geol. 2003; 35(3):279-300.
  • [33]Martín-Ferníndez JA, Barceló-Vidal C, Pawlowsky-Glahn V. Dealing with zeros and missing values in compositional data sets using nonparametric imputation. Math Geol. 2003; 35(3):253-78.
  • [34]Dasgupta S, Freund Y. Random projection trees and low dimensional manifolds In: Ladner RE, Dwork C, editors. Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing (STOC), Victoria, British Columbia, Canada: May 17–20 2008. p. 537–46.
  • [35]Lorenz DH, Eichhorn KW, Bleihilder H, Klose R, Meier U, Weber E. Growth stages of the grapevine: Phenological growth stages of the grapevine (vitis vinifera l. ssp. vinifera)-codes and descriptions according to the extended bbch scale. Aust J Grape and Wine Res. 1995; 1(2):100-3.
  • [36]Manning CD, Raghavan P, Schütze H. Introduction to Information Retrieval. Cambridge University Press, New York, NY, USA; 2009.
  • [37]Amigó E, Gonzalo J, Artiles J, Verdejo F. A comparison of extrinsic clustering evaluation metrics based on formal constraints. Inf Retrieval. 2009; 12(4):461-86.
  • [38]Zhao Y, Karypis G. Empirical and theoretical comparisons of selected criterion functions for document clustering. Machine Learning. 2004; 55(3):311-31.
  • [39]Nguyen HT, Smeulders AWM. Active learning using pre-clustering. In: Proceedings of International Conference on Machine Learning (ICML), Banff, Alberta, Canada: 2004. p. 79–86.
  • [40]Guo Y, Bennamoun M, Sohel F, Lu M, Wan J, Kwok NM. A comprehensive performance evaluation of 3D local feature descriptors. Int J Comput Vision. 2015:1–24. ISSN 0920-5691, doi:http://dx.doi.org/10.1007/s11263-015-0824-y.
  文献评价指标  
  下载次数:99次 浏览次数:17次