期刊论文详细信息
BioData Mining
Identifying gene-gene interactions that are highly associated with Body Mass Index using Quantitative Multifactor Dimensionality Reduction (QMDR)
Rishika De5  Shefali S. Verma10  Fotios Drenos7  Emily R. Holzinger10  Michael V. Holmes8  Molly A. Hall10  David R. Crosslin4  David S. Carrell3  Hakon Hakonarson2  Gail Jarvik11  Eric Larson3  Jennifer A. Pacheco9  Laura J. Rasmussen-Torvik1  Carrie B. Moore10  Folkert W. Asselbergs13  Jason H. Moore6  Marylyn D. Ritchie10  Brendan J. Keating2  Diane Gilbert-Diamond12 
[1] Department of Preventive Medicine, Northwestern University, Feinberg School of Medicine, 680 N Lake Shore Drive, Suite 1400, Chicago 60611, IL, USA
[2] The Joseph Stokes Jr. Research Institute, The Children’s Hospital of Philadelphia, Office 1016 Abramson Building, Room 1216E, 3615 Civic Center Blvd, Philadelphia 19104, PA, USA
[3] Group Health Research Institute, Metropolitan Park East, 1730 Minor Avenue, Suite 1600, Seattle 98101-1448, WA, USA
[4] Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle 98195-5065, WA, USA
[5] Computational Genetics Laboratory, Department of Genetics, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, 706 Rubin Building, HB7937, One Medical Center Dr, Lebanon 03756, NH, USA
[6] Institute for Biomedical Informatics, The Perelman School of Medicine, University of Pennsylvania, 1418 Blockley Hall, 423 Guardian Drive, Philadelphia 19104-6021, PA, USA
[7] Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, 5 University Street, London WC1E 6JF, UK
[8] Division of Transplant Surgery, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, 2 Dulles Pvln, Philadelphia 19104, PA, USA
[9] Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, 303 E. Superior Street, Lurie 7-125, Chicago 60611, IL, USA
[10] Center for Systems Genomics, Department of Biochemistry and Molecular Biology, 512 Wartik Laboratory, The Pennsylvania State University, University Park 16802, PA, USA
[11] Division of Medical Genetics, Department of Medicine, University of Washington, Health Sciences Building, K-253B, Medical Genetics, Seattle 98195-7720, WA, USA
[12] Department of Epidemiology, Geisel School of Medicine at Dartmouth, One Medical Center Drive, 7927 Rubin Building, Lebanon 03756, NH, USA
[13] Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, The Netherlands
关键词: GWAS;    Multifactor dimensionality reduction;    Gene-gene interaction;    Epistasis;    Obesity;   
Others  :  1234858
DOI  :  10.1186/s13040-015-0074-0
 received in 2015-06-12, accepted in 2015-12-04,  发布年份 2015
PDF
【 摘 要 】

Background

Despite heritability estimates of 40–70 % for obesity, less than 2 % of its variation is explained by Body Mass Index (BMI) associated loci that have been identified so far. Epistasis, or gene-gene interactions are a plausible source to explain portions of the missing heritability of BMI.

Methods

Using genotypic data from 18,686 individuals across five study cohorts – ARIC, CARDIA, FHS, CHS, MESA – we filtered SNPs (Single Nucleotide Polymorphisms) using two parallel approaches. SNPs were filtered either on the strength of their main effects of association with BMI, or on the number of knowledge sources supporting a specific SNP-SNP interaction in the context of BMI. Filtered SNPs were specifically analyzed for interactions that are highly associated with BMI using QMDR (Quantitative Multifactor Dimensionality Reduction). QMDR is a nonparametric, genetic model-free method that detects non-linear interactions associated with a quantitative trait.

Results

We identified seven novel, epistatic models with a Bonferroni corrected p-value of association < 0.1. Prior experimental evidence helps explain the plausible biological interactions highlighted within our results and their relationship with obesity. We identified interactions between genes involved in mitochondrial dysfunction (POLG2), cholesterol metabolism (SOAT2), lipid metabolism (CYP11B2), cell adhesion (EZR), cell proliferation (MAP2K5), and insulin resistance (IGF1R). Moreover, we found an 8.8 % increase in the variance in BMI explained by these seven SNP-SNP interactions, beyond what is explained by the main effects of an index FTO SNP and the SNPs within these interactions. We also replicated one of these interactions and 58 proxy SNP-SNP models representing it in an independent dataset from the eMERGE study.

Conclusion

This study highlights a novel approach for discovering gene-gene interactions by combining methods such as QMDR with traditional statistics.

【 授权许可】

   
2015 De et al.

【 预 览 】
附件列表
Files Size Format View
20151219010104558.pdf 982KB PDF download
Fig. 2. 44KB Image download
Fig. 1. 43KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

【 参考文献 】
  • [1]Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, et al.: Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 2010, 42:937-48.
  • [2]Calle EE, Kaaks R: Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer 2004, 4:579-91.
  • [3]Ogden CL, Carroll MD, Kit BK, Flegal KM: Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA 2014, 311:806-14.
  • [4]Kelly T, Yang W, Chen C-S, Reynolds K, He J: Global burden of obesity in 2005 and projections to 2030. Int J Obes (Lond) 2008, 32:1431-7.
  • [5]Scuteri A, Sanna S, Chen W-M, Uda M, Albai G, Strait J, et al.: Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet 2007, 3:e115.
  • [6]Zhao J, Bradfield JP, Zhang H, Sleiman PM, Kim CE, Glessner JT, et al.: Role of BMI-associated loci identified in GWAS meta-analyses in the context of common childhood obesity in European Americans. Obesity 2011, 19:2436-9.
  • [7]Stunkard AJ, Foch TT, Hrubec Z: A twin study of human obesity. JAMA J Am Med Assoc 1986, 256:51-54.
  • [8]Maes HH, Neale MC, Eaves LJ: Genetic and environmental factors in relative body weight and human adiposity. Behav Genet 1997, 27:325-51.
  • [9]Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, et al.: Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 2010, 11:446-50.
  • [10]Moore JH, Asselbergs FW, Williams SM: Bioinformatics challenges for genome-wide association studies. Bioinformatics 2010, 26:445-55.
  • [11]Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al.: Finding the missing heritability of complex diseases. Nature 2009, 461:747-53.
  • [12]Edwards AO, Ritter R, Abel KJ, Manning A, Panhuysen C, Farrer LA: Complement factor H polymorphism and age-related macular degeneration. Science 2005, 308:421-4.
  • [13]Klein RJ, Zeiss C, Chew EY, Tsai J-Y, Sackler RS, Haynes C, et al.: Complement factor H polymorphism in age-related macular degeneration. Science 2005, 308:385-9.
  • [14]Haines JL, Hauser M a, Schmidt S, Scott WK, Olson LM, Gallins P, et al.: Complement factor H variant increases the risk of age-related macular degeneration. Science 2005, 308:419-21.
  • [15]Easton DF, Pooley KA, Dunning AM, Pharoah PDP, Ballinger DG, Struewing JP, et al.: Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 2009, 447:1087-1093.
  • [16]Zaitlen N, Kraft P: Heritability in the genome-wide association era. Hum Genet 2012, 131:1655-1664.
  • [17]Moore JH: The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Hum Hered 2003, 56:73-82.
  • [18]Mackay TFC: Epistasis and quantitative traits: using model organisms to study gene-gene interactions. Nat Rev Genet 2014, 15:22-33.
  • [19]Hill C, Gerardo D, James F, Tyroler HA, Chambless LE, Romm J, et al.: The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. Am J Epidemiol 1989, 129:687-702.
  • [20]Friedman GD, Cutter GR, Donahue RP, Hughes GH, Hulley SB, Jacobs DR, et al.: CARDIA: study design, recruitment, and some characteristics of the examined subjects. J Clin Epidemiol 1988, 41:1105-16.
  • [21]Fried LP, Borhani NO, Enright P, Furberg CD, Gardin JM, Kronmal RA, et al.: The Cardiovascular Health Study: design and rationale. Ann Epidemiol 1991, 1:263-76.
  • [22]Dawber TR, Meadors GF, Moore FE: Epidemiological approaches to heart disease: the Framingham Study. Am J Public Health Nations Health 1951, 41:279-81.
  • [23]Bild DE, Bluemke DA, Burke GL, Detrano R, Diez Roux AV, Folsom AR, et al.: Multi-ethnic study of atherosclerosis: objectives and design. Am J Epidemiol 2002, 156:871-81.
  • [24]Keating BJ, Tischfield S, Murray SS, Bhangale T, Price TS, Glessner JT, et al.: Concept, design and implementation of a cardiovascular gene-centric 50 k SNP array for large-scale genomic association studies. PLoS One 2008, 3:e3583.
  • [25]Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al.: PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007, 81:559-75.
  • [26]Sun X, Lu Q, Mukheerjee S, Crane PK, Elston R, Ritchie MD: Analysis pipeline for the epistasis search - statistical versus biological filtering. Front Genet 2014, 5:106.
  • [27]Guo Y, Lanktree MB, Taylor KC, Hakonarson H, Lange L a, Keating BJ: Gene-centric meta-analyses of 108 912 individuals confirm known body mass index loci and reveal three novel signals. Hum Mol Genet 2013, 22:184-201.
  • [28]Bush WS, Dudek SM, Ritchie MD: Biofilter: A Knowledge-Integration System for the Multi-Locus Analysis of Genome-Wide Association Studies. Pacific Symp Biocomput 2009:368–379.. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2859610/ webcite
  • [29]Pendergrass SA, Frase A, Wallace J, Wolfe D, Katiyar N, Moore C, et al.: Genomic analyses with biofilter 2.0: knowledge driven filtering, annotation, and model development. BioData Min 2013, 6:25. BioMed Central Full Text
  • [30]Turner SD, Berg RL, Linneman JG, Peissig PL, Crawford DC, Denny JC, et al.: Knowledge-driven multi-locus analysis reveals gene-gene interactions influencing HDL cholesterol level in two independent EMR-linked biobanks. PLoS One 2011, 6:e19586.
  • [31]Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D: Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 2006, 38:904-9.
  • [32]Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al.: A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 2007, 316:889-94.
  • [33]Gui J, Moore JH, Williams SM, Andrews P, Hillege HL, van der Harst P, et al.: A simple and computationally efficient approach to multifactor dimensionality reduction analysis of gene-gene interactions for quantitative traits. PLoS One 2013, 8:e66545.
  • [34]Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, et al.: Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 2001, 69:138-47.
  • [35]Greene CS, Himmelstein DS, Nelson HH, Kelsey KT, Williams SM, Andrew AS, et. al. Enabling personal genomics with an explicit test of epistasis. Pacific Symp Biocomput 2010:327–36.. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2916690/ webcite
  • [36]Wong AK, Park CY, Greene CS, Bongo L a, Guan Y, Troyanskaya OG: IMP: IMP: a multi-species functional genomics portal for integration, visualization and prediction of protein functions and networks. Nucleic Acids Res 2012, 40(Web Server issue):W484-90.
  • [37]McCarty CA, Chisholm RL, Chute CG, Kullo IJ, Jarvik GP, Larson EB, et al.: The eMERGE Network: a consortium of biorepositories linked to electronic medical records data for conducting genomic studies. BMC Med Genomics 2011, 4:13. BioMed Central Full Text
  • [38]Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O’Donnell CJ, de Bakker PIW: SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 2008, 24:2938-9.
  • [39]Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K: A comprehensive review of genetic association studies. Genet Med 2002, 4:45-61.
  • [40]Mackay TF, Moore JH: Why epistasis is important for tackling complex human disease genetics. Genome Med 2014, 6:42. BioMed Central Full Text
  • [41]Moore JH, Williams SM: New strategies for identifying gene-gene interactions in hypertension. Ann Med 2002, 34:88-95.
  • [42]Moore J, Ritchie M: The Challenges of Whole-Genome Approaches to Common Disease. JAMA J Am Med Assoc 2004, 291:1642-1643.
  • [43]Russo P, Lauria F, Loguercio M, Barba G, Arnout J, Cappuccio FP, et al.: −344C/T Variant in the promoter of the aldosterone synthase gene (CYP11B2) is associated with metabolic syndrome in men. Am J Hypertens 2007, 20:218-22.
  • [44]Ranade K, Wu KD, Risch N, Olivier M, Pei D, Hsiao CF, et al.: Genetic variation in aldosterone synthase predicts plasma glucose levels. Proc Natl Acad Sci U S A 2001, 98:13219-24.
  • [45]Bellili NM, Foucan L, Fumeron F, Mohammedi K, Travert F, Roussel R, et al.: Associations of the −344 T > C and the 3097 G > A polymorphisms of CYP11B2 gene with hypertension, type 2 diabetes, and metabolic syndrome in a French population. Am J Hypertens 2010, 23:660-7.
  • [46]Quesada V, Sánchez LM, Álvarez J, López-Otín C: Identification and characterization of human and mouse ovastacin: a novel metalloproteinase similar to hatching enzymes from arthropods, birds, amphibians and fish. J Biol Chem 2004, 279(25):26627-26634.
  • [47]Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000, 28:27-30.
  • [48]Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G, et al.: The Reactome pathway knowledgebase. Nucleic Acids Res 2014, 42(Database issue):D472-7.
  • [49]Caprio M, Fève B, Claës A, Viengchareun S, Lombès M, Zennaro M-C: Pivotal role of the mineralocorticoid receptor in corticosteroid-induced adipogenesis. FASEB J 2007, 21:2185-94.
  • [50]Wang Y-X, Zhang C-L, Yu RT, Cho HK, Nelson MC, Bayuga-Ocampo CR, et al.: Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol 2004, 2:e294.
  • [51]Schuler M, Ali F, Chambon C, Duteil D, Bornert J-M, Tardivel A, et al.: PGC1alpha expression is controlled in skeletal muscles by PPARbeta, whose ablation results in fiber-type switching, obesity, and type 2 diabetes. Cell Metab 2006, 4:407-14.
  • [52]Zorzano A, Liesa M, Palacín M: Role of mitochondrial dynamics proteins in the pathophysiology of obesity and type 2 diabetes. Int J Biochem Cell Biol 2009, 41:1846-54.
  • [53]Ichinose A, Davie EW: Characterization of the gene for the a subunit of human factor XIII (plasma transglutaminase), a blood coagulation factor. Proc Natl Acad Sci U S A 1988, 85:5829-33.
  • [54]Naukkarinen J, Surakka I, Pietiläinen KH, Rissanen A, Salomaa V, Ripatti S, et al.: Use of genome-wide expression data to mine the “Gray Zone” of GWA studies leads to novel candidate obesity genes. PLoS Genet 2010, 6:e1000976.
  • [55]Skurk T, Hauner H: Obesity and impaired fibrinolysis: role of adipose production of plasminogen activator inhibitor-1. Int J Obes Relat Metab Disord 2004, 28:1357-64.
  • [56]Lau DCW, Dhillon B, Yan H, Szmitko PE, Verma S: Adipokines: molecular links between obesity and atheroslcerosis. Am J Physiol Heart Circ Physiol 2005, 288:H2031-41.
  • [57]Buhman KK, Accad M, Novak S, Choi RS, Wong JS, Hamilton RL, et al.: Resistance to diet-induced hypercholesterolemia and gallstone formation in ACAT2-deficient mice. Nat Med 2000, 6:1341-7.
  • [58]Miettinen TA, Gylling H: Cholesterol absorption efficiency and sterol metabolism in obesity. Atherosclerosis 2000, 153:241-8.
  • [59]Simonen P, Gylling H, Howard AN, Miettinen TA: Introducing a new component of the metabolic syndrome. Am J Clin Nutr. 2000, 72(1):82-88.
  • [60]Oshikawa J, Otsu K, Toya Y, Tsunematsu T, Hankins R, Kawabe J, et al.: Insulin resistance in skeletal muscles of caveolin-3-null mice. Proc Natl Acad Sci U S A 2004, 101:12670-5.
  • [61]Otsu K, Toya Y, Oshikawa J, Kurotani R, Yazawa T, Sato M, et al.: Caveolin gene transfer improves glucose metabolism in diabetic mice. Am J Physiol Cell Physiol. 2010, 298(3):450-456.
  • [62]Kahn SE, Hull RL, Utzschneider KM: Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006, 444:840-6.
  • [63]Carty CL, Johnson N a, Hutter CM, Reiner AP, Peters U, Tang H, et al.: Genome-wide association study of body height in African Americans: the Women’s Health Initiative SNP Health Association Resource (SHARe). Hum Mol Genet 2012, 21:711-20.
  文献评价指标  
  下载次数:16次 浏览次数:7次