期刊论文详细信息
Biotechnology for Biofuels
Radiation induces acid tolerance of Clostridium tyrobutyricum and enhances bioproduction of butyric acid through a metabolic switch
Xiang Zhou2  Xi-Hong Lu2  Xue-Hu Li2  Zhi-Jun Xin2  Jia-Rong Xie1  Mei-Rong Zhao2  Liang Wang2  Wen-Yue Du2  Jian-Ping Liang2 
[1] China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, PR China
[2] Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, Gansu 730000, PR China
关键词: Irradiation;    Fermentation;    12C6+ heavy ion;    Clostridium tyrobutyricum;    Butyrate;    Acid inhibition;   
Others  :  793660
DOI  :  10.1186/1754-6834-7-22
 received in 2013-09-01, accepted in 2014-02-03,  发布年份 2014
PDF
【 摘 要 】

Background

Butyric acid as a renewable resource has become an increasingly attractive alternative to petroleum-based fuels. Clostridium tyrobutyricum ATCC 25755T is well documented as a fermentation strain for the production of acids. However, it has been reported that butyrate inhibits its growth, and the accumulation of acetate also inhibits biomass synthesis, making production of butyric acid from conventional fermentation processes economically challenging. The present study aimed to identify whether irradiation of C. tyrobutyricum cells makes them more tolerant to butyric acid inhibition and increases the production of butyrate compared with wild type.

Results

In this work, the fermentation kinetics of C. tyrobutyricum cultures after being classically adapted for growth at 3.6, 7.2 and 10.8 g·L-1 equivalents were studied. The results showed that, regardless of the irradiation used, there was a gradual inhibition of cell growth at butyric acid concentrations above 10.8 g·L-1, with no growth observed at butyric acid concentrations above 3.6 g·L-1 for the wild-type strain during the first 54 h of fermentation. The sodium dodecyl sulfate polyacrylamide gel electrophoresis also showed significantly different expression levels of proteins with molecular mass around the wild-type and irradiated strains. The results showed that the proportion of proteins with molecular weights of 85 and 106 kDa was much higher for the irradiated strains. The specific growth rate decreased by 50% (from 0.42 to 0.21 h-1) and the final concentration of butyrate increased by 68% (from 22.7 to 33.4 g·L-1) for the strain irradiated at 114 AMeV and 40 Gy compared with the wild-type strains.

Conclusions

This study demonstrates that butyric acid production from glucose can be significantly improved and enhanced by using 12C6+ heavy ion-irradiated C. tyrobutyricum. The approach is economical, making it competitive compared with similar fermentation processes. It may prove useful as a first step in a combined method employing long-term continuous fermentation of acid-production processes.

【 授权许可】

   
2014 Zhou et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705054109517.pdf 2405KB PDF download
Figure 5. 79KB Image download
Figure 4. 117KB Image download
Figure 3. 99KB Image download
Figure 2. 177KB Image download
Figure 1. 76KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Hoelzle R: Genetic improvement of Clostridium tyrobutyricum for butanol production by insertion of adhE from Clostridium acetobutylicum. Department of Chemical and Biomolecular Engineering: The Ohio State University; 2010. [Honors Thesis]
  • [2]Chen JS: Alcohol dehydrogenase: multiplicity and relatedness in the solvent-producing clostridia. FEMS Microbiol Rev 1995, 17(3):263-273.
  • [3]Dwidar M, Park JY, Mitchell RJ, Sang BI: The future of butyric acid in industry. ScientificWorldJournal 2012, 2012:471417.
  • [4]Song H, Eom MH, Lee S, Lee J, Cho JH, Seung D: Modeling of batch experimental kinetics and application to fed-batch fermentation of Clostridium tyrobutyricum for enhanced butyric acid production. Biochem Eng J 2010, 53(1):71-76.
  • [5]Jiang L, Wang J, Liang S, Cai J, Xu Z, Cen P, Yang S, Li S: Enhanced butyric acid tolerance and bioproduction by Clostridium tyrobutyricum immobilized in a fibrous bed bioreactor. Biotechnol Bioeng 2011, 108(1):31-40.
  • [6]Zigov J, Turdik E: Advances in biotechnological production of butyric acid. J Ind Microbiol Biot 2000, 24(3):153-160.
  • [7]Huang J, Cai J, Wang J, Zhu XC, Huang L, Yang ST, Xu Z: Efficient production of butyric acid from Jerusalem artichoke by immobilized Clostridium tyrobutyricum in a fibrous-bed bioreactor. Bioresour Technol 2011, 102(4):3923-3926.
  • [8]Wang X, Maegawa T, Karasawa T, Ozaki E, Nakamura S: Clostridium sardiniense Prvot 1938 and Clostridium absonum Nakamura et al. 1973 are heterotypic synonyms: evidence from phylogenetic analyses of phospholipase C and 16S rRNA sequences, and DNA relatedness. Int J Syst Evol Microbiol 2005, 55(Pt3):1193-1197.
  • [9]Ahmed A, Lewis RS: Fermentation of biomass-generated synthesis gas: effects of nitric oxide. Biotechnol Bioeng 2007, 97(5):1080-1086.
  • [10]Clark GC, Briggs DC, Karasawa T, Wang X, Cole AR, Maegawa T, Jayasekera PN, Naylor CE, Miller J, Moss DS, Nakamura S, Basak AK, Titball RW: Clostridium absonum alpha-toxin: new insights into clostridial phospholipase C substrate binding and specificity. J Mol Biol 2003, 333(4):759-769.
  • [11]Liu XG, Zhu Y, Yang ST: Butyric acid and hydrogen production by Clostridium tyrobutyricum ATCC 25755 and mutants. Enzyme Microb Tech 2006, 38(3–4):521-528.
  • [12]Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, Cai J, Hippe H, Farrow JA: The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 1994, 44(4):812-826.
  • [13]Cato EP, Hash DE, Holdeman LV, Moore WE: Electrophoretic study of Clostridium species. J Clin Microbiol 1982, 15(4):688-702.
  • [14]Skerman VDB, McGowan V, Sneath PHA: Approved Lists of Bacterial Names (Amended). Edited by Skerman VBD, McGowan V, Sneath PHA. Washington (DC): ASM Press; 1989.
  • [15]Hayase M, Mitsui N, Tamai K, Nakamura S, Nishida S: Isolation of Clostridium absonum and its cultural and biochemical properties. Infect Immun 1974, 9(1):15-19.
  • [16]Nakamura S, Shimamura T, Hayase M, Nishida S: Numerical taxonomy of Saccharolytic clostridia, particularly Clostridium perfringens-like strains: descriptions of Clostridium absonum sp. n. and Clostridium paraperfringens. Int J Syst Bacteriol 1973, 23(4):419-429.
  • [17]Xu D, Lewis RS: Syngas fermentation to biofuels: effects of ammonia impurity in raw syngas on hydrogenase activity. Biomass Bioenergy 2012, 45:303-310.
  • [18]Zhu Y, Liu X, Yang ST: Construction and characterization of pta gene-deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid fermentation. Biotechnol Bioeng 2005, 90(2):154-166.
  • [19]Johnson JL, Francis BS: Taxonomy of the Clostridia: ribosomal ribonucleic acid homologies among the species. J Gen Microbiol 1975, 88(2):229-244.
  • [20]Jiang L, Wang JF, Liang SZ, Cai J, Xu ZN: Control and optimization of Clostridium tyrobutyricum ATCC 25755 adhesion into fibrous matrix in a fibrous bed bioreactor. Appl Biochem Biotechnol 2011, 165:98-108.
  • [21]Davey ME, O’toole GA: Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 2000, 64(4):847-867.
  • [22]Ferrandi EE, Bertolesi GM, Polentini F, Negri A, Riva S, Monti D: In search of sustainable chemical processes: cloning, recombinant expression, and functional characterization of the 7alpha- and 7beta-hydroxysteroid dehydrogenases from Clostridium absonum. Appl Microbiol Biotechnol 2011, 95(5):1221-1233.
  • [23]Tashiro Y, Shinto H, Hayashi M, Baba S, Kobayashi G, Sonomoto K: Novel high-efficient butanol production from butyrate by non-growing Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) with methyl viologen. J Bioscie Bioeng 2007, 104:238-240.
  • [24]Song JH, Ventura JRS, Lee CH, Jahng D: Butyric acid production from brown algae using Clostridium tyrobutyricum ATCC 25755. Biotechnol Bioproc E 2011, 16(1):42-49.
  • [25]Rogers P, Chen JS, Zidwick MJ: Organic acid and solvent production. Proc Natl Acad Sci USA 2006, 3:511-755.
  • [26]Zhu Y, Yang ST: Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum. J Biotechnol 2004, 110(2):143-157.
  • [27]Malcaa J, Freireb F: Renewability and lifecycle energy efficiency of bioethanol and bio-ethyl tertiary butyl ether (bioETBE): assessing the implications of allocation. Energy 2006, 31(15):3362-3380.
  • [28]Chavanne X, Frangi JP: Comparison of the energy efficiency to produce agroethanol between various industries and processes: the transport stage. Biomass Bioenerg 2011, 35(19):4075-4091.
  • [29]Wei D, Liu XG, Yang ST: Butyric acid production from sugarcane bagasse hydrolysate by Clostridium tyrobutyricum immobilized in a fibrous-bed bioreactor. Bioresour Technol 2013, 129:553-560.
  • [30]Chang JJ, Chou CH, Ho CY, Chen WN, Lay JJ, Huang CC: Syntrophic co-culture of aerobic Bacillusand anaerobic Clostridium for biofuels and bio-hydrogen production. Int J Hydrogen Energ 2008, 33(19):5137-5146.
  • [31]Tran HTM, Cheirsilp B, Hodgson B, Umsakulc K: Potential use of Bacillus subtilisin a co-culture with Clostridium butylicum for acetone-butanol-ethanol production from cassava starch. Biochem Eng J 2010, 48(2):260-267.
  • [32]Quintana N, Van de Rhee FVKMD, Voshol GP, Verpoorte R: Renewable energy from cyanobacteria: energy production optimization by metabolic pathway engineering. Appl Microbiol Biotechnol 2011, 91(3):471-490.
  • [33]Naika SN, Goudb VV, Rout PK, Dalai AK: Production of first and second generation biofuels: a comprehensive review. Renew Sust Energ Rev 2009, 14:578-597.
  • [34]Antoni D, Zverlov VV, Schwarz WH: Biofuels from microbes. App Microbiol Biot 2007, 77(1):23-35.
  • [35]Wu ZT, Yang ST: Extractive fermentation for butyric acid production from glucose by Clostridium tyrobutyricum. Biotechnol Bioeng 2003, 82(1):93-102.
  • [36]Zhang CH, Yang H, Yang FX, Ma YJ: Current progress on butyric acid production by fermentation. Curr Microbiol 2009, 59(6):656-663.
  • [37]Tracy BP, Jones SW, Fast AG, Indurthi DC, Papoutsakis ET: Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr Opin Biotech 2012, 23(3):364-381.
  • [38]Filho MV, Araujo C, Bonf A, Porto W: Chemistry based on renewable raw materials: perspectives for a sugar canebased biorefinery. Enzyme Res 2011, 2011:654596.
  • [39]Serrano-Ruiz JC, West RM, Dumesic JA: Catalytic conversion of renewable biomass resources to fuels and chemicals. Annu Rev Chem Biomol Eng 2010, 1:79-100.
  • [40]Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS: Fermentative butanol production by clostridia. Biotechnol Bioeng 2008, 101(2):209-228.
  • [41]Shinto H, Tashiro Y, Kobayashi G, Sekiguchi T, Hanai T, Kuriya Y, Okamoto M, Sonomoto K: Kinetic study of substrate dependency for higher butanol production in acetone-butanol-ethanol fermentation. Process Biochem 2008, 43(12):1452-1461.
  • [42]Jang YS, Lee JY, Lee J, Park JH, Ae Im J, Eom MH, Lee J, Lee SH, Song H, Cho JH, Seung DY, Lee SY: Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum. MBio 2012, 3(5):e00314-12.
  • [43]Ltke-Eversloh T, Bahl H: Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotechnol 2012, 22(5):634-647.
  • [44]Lehmann D, Hnicke D, Ehrenreich A, Schmidt M, Weuster-Botz D, Bahl H, Ltke-Eversloh T: Modifying the product pattern of Clostridium acetobutylicum: physiological effects of disrupting the acetate and acetone formation pathways. Appl Microbiol Biotechnol 2012, 94(3):743-754.
  • [45]Chong ML, Abdul Rahima R, Shirai Y, Ali Hassan M: Biohydrogen production by Clostridium butyricum EB6 from palm oil mill effluent. Int J Hydrogen Energ 2009, 34(2):764-771.
  • [46]Lin PY, Whang LM, Wu YR, Ren WJ, Hsiao CJ, Li SL, Chang JC: Biological hydrogen production of the genus Clostridium: metabolic study and mathematical model simulation. Int J Hydrogen Energ 2007, 32(12):1728-1735.
  • [47]Calusinska M, Happe T, Joris B, Wilmotte A: The surprising diversity of clostridial hydrogenases: a comparative genomic perspective. Microbiology 2010, 156:1575-1588.
  • [48]Liu XG, Zhu Y, Yang ST: Construction and characterization of ack deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid and hydrogen production. Biotechnol Progr 2008, 22(5):1265-1275.
  • [49]Jiang L, Wang JF, Liang SZ, Wang XN, Cen P, Xu ZN: Butyric acid fermentation in a fibrous bed bioreactor with immobilized Clostridium tyrobutyricum from cane molasses. Bioresource Technol 2009, 100(13):3403-3409.
  • [50]Xu Z, Jiang L: 3.20-butyric acid. Comprehensive Biotechnology 2011, 3:207-215.
  • [51]Zhu Y, Wu Z, Yang ST: Butyric acid production from acid hydrolysate of corn fiber by Clostridium tyrobutyricum in a fibrous-bed bioreactor. Process Biochem 2002, 38(5):657-666.
  • [52]Zigova J, Sturdik E, Vandak D, Schlosser S: Butyric acid production by Clostridium butyricum with integrated extraction and pertraction. Process Biochem 1999, 34(8):835-844.
  • [53]Vandak D, Zigova J, Sturdik E, Schlosser S: Evaluation of solvent and pH for extractive fermentation of butyric acid. Process Biochem 1997, 32(3):245-251.
  • [54]Zhu Y, Yang ST: Adaptation of Clostridium tyrobutyricum for enhanced tolerance to butyric acid in a fibrous-bed bioreactor. Biotechnol Prog 2003, 19(2):365-372.
  • [55]Jo JH, Jeon CO, Lee SY, Lee DS, Parke JM: Molecular characterization and homologous overexpression of [FeFe]-hydrogenase in Clostridium tyrobutyricum JM1. Int J Hydrogen Energ 2010, 35(3):1065-1073.
  • [56]Sang BI, Mitchell RJ, Kim JS, Jeon BS: Continuous hydrogen and butyric acid fermentation by immobilized Clostridium tyrobutyricum ATCC 25755: effects of the glucose concentration and hydraulic retention time. Bioresour Technol 2009, 100(21):53.
  • [57]Jiang L, Cai J, Wang J, Liang S, Xu Z, Yang ST: Phosphoenolpyruvate-dependent phosphorylation of sucrose by Clostridium tyrobutyricum ZJU 8235: evidence for the phosphotransferase transport system. Bioresour Technol 2010, 101(1):304-309.
  • [58]Jiang L, Wang J, Liang S, Wang X, Cen P, Xu Z: Production of butyric acid from glucose and xylose with immobilized cells of Clostridium tyrobutyricum in a fibrous-bed bioreactor. Appl Biochem Biotechnol 2010, 160(2):350-359.
  • [59]Bisht D, Yadav SK, Darmwal NS: Enhanced production of extracellular alkaline lipase by an improved strain of pseudomonas aeruginosa MTCC 10,055. Am J Applied Sci 2012, 9(2):158-162.
  • [60]Peano C, Tal A, Corti G, Pasanisi D, Durante M, Mita G, Bicciato S, De Bellis G, Alifano P: Comparative genomics and transcriptional profiles of Saccharopolyspora erythraea NRRL 2338 and a classically improved erythromycin over-producing strain. Microb Cell Fact 2012, 11:32. BioMed Central Full Text
  • [61]Nevoigt E: Progress in metabolic engineering of saccharomyces cerevisiae. Microbiol Mol Biol Rev 2008, 72(3):379-412.
  • [62]Schardt D, Elsasser T, Schulz-Ertner D: Heavy-ion tumor therapy: physical and radiobiological benefits. Rev Mod Phys 2010, 82:383-425.
  • [63]Hawkins RB: A statistical theory of cell killing by radiation of varying linear energy transfer. Radiat Res 1944, 140:366-374.
  • [64]McCready S, Muller JA, Boubriak I, Berquist BR, DasSarma S: UV irradiation induces homologous recombination genes in the model archaeon, Halobacterium sp. NRC-1. Saline Systems 2055, 4:1-3.
  • [65]Kase Y, Kanai T, Matsufuji N, Furusawa Y, Elssser T, Scholz M: Biophysical calculation of cell survival probabilities using amorphous track structure models for heavy-ion irradiation. Phys Med Biol 2008, 7:37-59.
  • [66]Choi JMD, Kang JOMD: Basics of particle therapy II: relative biological effectiveness. Radiat Oncol J 2012, 30:1-13.
  • [67]Ito A, Nakano H, Kusano Y, Hirayama R, Furusawa Y, Murayama C, Mori T, Katsumura YSK: Contribution of indirect action to radiation-induced mammalian cell inactivation: dependence on photon energy and heavy-ion LET. Radiat Res 2006, 165:703-712.
  • [68]DeVeaux LC, Muller JA, Smith J, Petrisko J, Wells SD, Pand D: Extremely radiation-resistant mutants of a halophilic archaeon with increased single-stranded DNA-binding protein (rpa) gene expression. Radiat Res 2007, 168:507-514.
  • [69]Munshi MK, Hossain MF, Huque R, Rahman M, Khatun A, Islam M, Hossain MA: Effect of gamma-ray induced mutant strains of Aspergillus niger on citric acid fermentation using molasses and jackfruit based medium. Acad J Nutr 2012, 1:19-24.
  • [70]Sato T, Watanabe R, Kase Y: Analysis of cell-survival fractions for heavy-ion irradiations based on microdosimetric kinetic model implemented in the particle and heavy ion transport code system. Radiat Prot Dosim 2011, 143:491-496.
  • [71]Vandersickel V, Depuydt J, Van Bockstaele B, Perletti G, Philippe J, Thierens H, Vral A: Early increase of radiation-induced γH2AX foci in a human Ku70/80 knockdown cell line characterized by an enhanced radiosensitivity. J Radiat Res 2010, 51:633-641.
  • [72]Tangney M, Mitchell WJ: Characterisation of a glucose phosphotransferase system in Clostridium acetobutylicum ATCC 824. Appl Microbiol Biotechnol 2007, 74(2):398-405.
  • [73]Janssen H, Döring C, Ehrenreich A, Voigt B, Hecker M, Bahl H, Fischer RJ: A proteomic and transcriptional view of acidogenesis and solventogenesis in Clostridium acetobutylicum in a chemostat culture. Appl Microbiol Biotechnol 2010, 87(6):2209-2226.
  • [74]de Mattos MJT, de Boer JP, Zoutberg GR, Neijssel OM: Metabolic shift analysis at high cell densities. FEMS Microbiol Rev 1994, 14(1):21-28.
  • [75]Jones DT, Woods DR: Acetone-butanol fermentation revisited. Microbiol Rev 1986, 50(40):484-524.
  • [76]Andersch W, Bahl H, Gottschalk G: Level of enzymes involved in acetate, butyrate, acetone and butanol formation by Clostridium acetobutylicum. Appl Microbiol Biotechnol 1983, 18(6):327-332.
  • [77]Boynton ZL, Bennett GN, Rudolph FB: Cloning, sequencing, and expression of genes encoding phosphotransacetylase and acetate kinase from Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 1996, 62:2758-2766.
  • [78]Michel-Savin D, Marchal R, Vandecasteele JP: Control of the selectivity of butyric acid production of Clostridium tyrobutyricum. Appl Microbiol Biotechnol 1990, 32:387-392.
  • [79]Jaros AM, Rova U, Berglund KA: Acetate adaptation of Clostridia tyrobutyricum for improved fermentation production of butyrate. Springer Plus 2013, 3:47.
  • [80]Kovrov-Kovar K, Egli T: Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate kinetics. Microbiol Mol Biol Rev 1998, 62(3):646-666.
  • [81]Meeuwse P, Akbari P, Rinzema A: Modeling growth, lipid accumulation and lipid turnover in submerged batch cultures of Umbelopsis isabellina. Bioprocess Biosyst Eng 2012, 35(4):519-603.
  • [82]Okpokwasili GC, Nweke CO: Microbial growth and substrate utilization kinetics. Afr J Biotechnol 2005, 5(4):305-317.
  • [83]Lynd LR, Weimer PJ, Pretorius IS: Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 2002, 66(3):506-577.
  • [84]Van der Meulen R, Avonts L, de Vuyst L: Short fractions of oligofructose are preferentially metabolized by bifidobac-terium animalis DN-173010. Appl Environ Microbiol 2004, 70(4):1923-1930.
  • [85]Michel-Savin D, Marchal R, Vandecasteele JP: Butyrate production in continuous culture of clostridium tyrobutyricum: effect of end-product inhibition. Appl Microbiol Biotechnol 1990, 33(2):127-131.
  • [86]Michel-Savin D, Marchal R, Vandecasteele JP: Control of the selectivity of butyric acid production and improvement of fermentation performance with Clostridium tyrobutyricum. Appl Microbiol Biotechnol 1990, 32(4):387-392.
  • [87]Ferras E, Minier M, Goma G: Acetonobutylic fermentation: improvement of performances by coupling continuous fermentation and ultrafiltration. Biotechnol Bioeng 1986, 28(4):523-533.
  • [88]Du JJ, McGraw A, Lorenz N, Beitle RR, Clausen EC, Hestekin JA: Continuous fermentation of Clostridium tyrobutyricum with partial cell recycle as a long-term strategy for butyric acid production. Energies 2012, 5:2835-2848.
  • [89]Lei Y, Zhao Y, Cheng R, Zhou X, Sun Y, Wang X, Xu G, Wang Y, Li S, Xiao G: Fluorescence emission from CsI(Tl) crystal induced by high-energy carbon ions. Opt Mater 2013, 35:1179-1183.
  • [90]Yanga YY, Wang JS, Wang Q, Ma JB, Huang MR, Han JP, Ma P, Jin SL, Bai Z, Hu Q, Jin L, Chen JB, Wada R, Sun ZY, Chen RF, Zhang XY, Hu ZG, Yuan XH, Cao XG, Xu ZG, Xu SW, Zhen X, Chen ZQ, Chen Z, Chen SZ, Du CM, Duan LM, Fu F, Gou BX, Hu J, et al.: A method for the measurement of elastic scattering angular distribution at HIRFL-RIBLL. Nucl Instrum Meth A 2013, 701:1-6.
  • [91]Zhou X, Xin ZJ, Lu XH, Yang XP, Zhao MR, Wang L, Liang JP: High efficiency degradation crude oil by a novel mutant irradiated from Dietzia strain by 12C6+ heavy ion using response surface methodology. Bioresour Technol 2013, 137:386-393.
  • [92]Zhou X, Xie JR, Tao L, Xin ZJ, Zhao FW, Lu XH, Zhao MR, Wang L, Liang JP: The effect of microdosimetric 12C6+ heavy ion irradiation and Mg2+ on canthaxanthin production in a novel strain of Dietzia natronolimnaea. BMC Microbiol 2013, 13(1):213. BioMed Central Full Text
  • [93]Price P, McMillan TJ: Use of the tetrazolium assay in measuring the response of human tumor cells to ionizing radiation. Cancer Res 1990, 50:1392-1396.
  • [94]Buch K, Peters T, Nawroth T, Snger M, Schmidberger H, Langguth P: Determination of cell survival after irradiation via clonogenic assay versus multiple MTT assay - a comparative study. Radiat Oncol 2012, 7:1. BioMed Central Full Text
  • [95]Wucherpfennig T, Hestler T, Krull R: Morphology engineering–osmolality and its effect on Aspergillus niger morphology and productivity. Microb Cell Fact 2011, 10:58. BioMed Central Full Text
  • [96]Yang SJ, Kataeva I, Adams MW: Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe “Anaerocellum thermophilum” DSM 6725. Appl Environ Microbiol 2009, 74(14):4762-4769.
  • [97]Dwidar M, Kim S, Jeon BS, Um Y, Mitchell RJ, Sang BI: Co-culturing a novel Bacillus strain with Clostridium tyrobutyricum ATCC 25755 to produce butyric acid from sucrose. Biotechnol Biofuels 2013, 6(1):35. BioMed Central Full Text
  • [98]Roach DR, Khatibi PA, Bischoff KM, Hughes SR, Donovan DM: Bacteriophage-encoded lytic enzymes control growth of contaminating Lactobacillus found in fuel ethanol fermentations. Biotechnol Biofuels 2013, 6(1):20. BioMed Central Full Text
  • [99]Herpoel-Gimbert I, Margeot A, Dolla A, Jan G, Molle D, Lignon S, Mathis H, Sigoillot JC, Monot F, Asther M: Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Biotechnol Biofuels 2008, 1(1):18. BioMed Central Full Text
  • [100]Korman TP, Sahachartsiri B, Charbonneau DM, Huang GL, Beauregard M, Bowie JU: Dieselzymes: development of a stable and methanol tolerant lipase for biodiesel production by directed evolution. Biotechnol Biofuels 2013, 6(1):70. BioMed Central Full Text
  • [101]Xu C, Huang R, Teng L, Wang D, Hemme CL, Borovok I, He Q, Lamed R, Bayer EA, Zhou J, Xu J: Structure and regulation of the cellulose degradome in Clostridium cellulolyticum. Biotechnol Biofuels 2013, 6(1):73. BioMed Central Full Text
  • [102]Liu J, Chen L, Wang J, Qiao J, Zhang W: Proteomic analysis reveals resistance mechanism against biofuel hexane in Synechocystis sp. PCC 6803. Biotechnol Biofuels 2012, 5(1):68. BioMed Central Full Text
  • [103]Masset J, Calusinska M, Hamilton C, Hiligsmann S, Joris B, Wilmotte A, Thonart P: Fermentative hydrogen production from glucose and starch using pure strains and artificial co-cultures of Clostridium spp. Biotechnol Biofuels 2012, 5(1):35. BioMed Central Full Text
  • [104]Tartar A, Wheeler MM, Zhou X, Coy MR, Boucias DG, Scharf ME: Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes. Biotechnol Biofuels 2009, 2:25. BioMed Central Full Text
  • [105]Pyne ME, Moo-Young M, Chung DA, Chou CP: Development of an electrotransformation protocol for genetic manipulation of Clostridium pasteurianum. Biotechnol Biofuels 2013, 6(1):50. BioMed Central Full Text
  • [106]Currie DH, Herring CD, Guss AM, Olson DG, Hogsett DA, Lynd LR: Functional heterologous expression of an engineered full length CipA from Clostridium thermocellum in Thermoanaerobacterium saccharolyticum. Biotechnol Biofuels 2013, 6(1):32. BioMed Central Full Text
  • [107]Branduardi P, Longo V, Berterame NM, Rossi G, Porro D: A novel pathway to produce butanol and isobutanol in Saccha-romyces cerevisiae. Biotechnol Biofuels 2013, 6(1):68. BioMed Central Full Text
  • [108]Dai Z, Dong H, Zhu Y, Zhang Y, Li Y, Ma Y: Introducing a single secondary alcohol dehydrogenase into butanol-tolerant Clostridium acetobutylicum Rh8 switches ABE fermentation to high level IBE fermentation. Biotechnol Biofuels 2012, 5(1):44. BioMed Central Full Text
  文献评价指标  
  下载次数:106次 浏览次数:30次