期刊论文详细信息
BMC Bioinformatics
WormGUIDES: an interactive single cell developmental atlas and tool for collaborative multidimensional data exploration
Zhirong Bao6  William A. Mohler3  Hari Shroff1  Daniel Colón-Ramos2  James Schaff3  Yicong Wu1  Abhishek Kumar1  Javier Marquina-Solis2  Zidong Yu5  Pavak Shah6  Ismar Kovacevic6  Raúl Catena4  Anthony Santella6 
[1]Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering NIH, Bethesda, MD, USA
[2]Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
[3]Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT, USA
[4]Present Address: Institute for Molecular Life Sciences, University of Zürich, Zürich, Switzerland
[5]School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
[6]Developmental Biology Program, Sloan-Kettering Institute, New York, NY, USA
关键词: Single-cell analysis;    Neurons;    Morphogenesis;    C. elegans;    Visualization;   
Others  :  1232211
DOI  :  10.1186/s12859-015-0627-8
 received in 2015-02-16, accepted in 2015-05-23,  发布年份 2015
【 摘 要 】

Background

Imaging and image analysis advances are yielding increasingly complete and complicated records of cellular events in tissues and whole embryos. The ability to follow hundreds to thousands of cells at the individual level demands a spatio-temporal data infrastructure: tools to assemble and collate knowledge about development spatially in a manner analogous to geographic information systems (GIS). Just as GIS indexes items or events based on their spatio-temporal or 4D location on the Earth these tools would organize knowledge based on location within the tissues or embryos. Developmental processes are highly context-specific, but the complexity of the 4D environment in which they unfold is a barrier to assembling an understanding of any particular process from diverse sources of information. In the same way that GIS aids the understanding and use of geo-located large data sets, software can, with a proper frame of reference, allow large biological data sets to be understood spatially. Intuitive tools are needed to navigate the spatial structure of complex tissue, collate large data sets and existing knowledge with this spatial structure and help users derive hypotheses about developmental mechanisms.

Results

Toward this goal we have developed WormGUIDES, a mobile application that presents a 4D developmental atlas for Caenorhabditis elegans. The WormGUIDES mobile app enables users to navigate a 3D model depicting the nuclear positions of all cells in the developing embryo. The identity of each cell can be queried with a tap, and community databases searched for available information about that cell. Information about ancestry, fate and gene expression can be used to label cells and craft customized visualizations that highlight cells as potential players in an event of interest. Scenes are easily saved, shared and published to other WormGUIDES users. The mobile app is available for Android and iOS platforms.

Conclusion

WormGUIDES provides an important tool for examining developmental processes and developing mechanistic hypotheses about their control. Critically, it provides the typical end user with an intuitive interface for developing and sharing custom visualizations of developmental processes. Equally important, because users can select cells based on their position and search for information about them, the app also serves as a spatially organized index into the large body of knowledge available to the C. elegans community online. Moreover, the app can be used to create and publish the result of exploration: interactive content that brings other researchers and students directly to the spatio-temporal point of insight. Ultimately the app will incorporate a detailed time lapse record of cell shape, beginning with neurons. This will add the key ability to navigate and understand the developmental events that result in the coordinated and precise emergence of anatomy, particularly the wiring of the nervous system.

【 授权许可】

   
2015 Santella et al.

附件列表
Files Size Format View
Fig. 4. 82KB Image download
Fig. 3. 90KB Image download
Fig. 2. 97KB Image download
Fig. 1. 83KB Image download
Fig. 4. 82KB Image download
Fig. 3. 90KB Image download
Fig. 2. 97KB Image download
Fig. 1. 83KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

【 参考文献 】
  • [1]Amat F, Lemon W, Mossing DP, McDole K, Wan Y, Branson K, Myers EW, Keller PJ. Fast, accurate reconstruction of cell lineages from large-scale fluorescence microscopy data. Nat Methods. 2014; 11(9):951-958.
  • [2]Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EH. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science. 2008; 322(5904):1065-1069.
  • [3]Wu Y, Ghitani A, Christensen R, Santella A, Du Z, Rondeau G, Bao Z, Colon-Ramos D, Shroff H. Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2011; 108(43):17708-17713.
  • [4]Giurumescu CA, Kang S, Planchon TA, Betzig E, Bloomekatz J, Yelon D, Cosman P, Chisholm AD. Quantitative semi-automated analysis of morphogenesis with single-cell resolution in complex embryos. Development. 2012; 139(22):4271-4279.
  • [5]Santella A, Du Z, Bao Z. A semi-local neighborhood-based framework for probabilistic cell lineage tracing. BMC Bioinformatics. 2014; 15:217. BioMed Central Full Text
  • [6]Mace DL, Weisdepp P, Gevirtzman L, Boyle T, Waterston RH. A high-fidelity cell lineage tracing method for obtaining systematic spatiotemporal gene expression patterns in Caenorhabditis elegans. G3 (Bethesda). 2013; 3(5):851-863.
  • [7]Heid PJ, Voss E, Soll DR. 3D-DIASemb: a computer-assisted system for reconstructing and motion analyzing in 4D every cell and nucleus in a developing embryo. Dev Biol. 2002; 245(2):329-347.
  • [8]Peng H, Ruan Z, Long F, Simpson JH, Myers EW. V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nat Biotechnol. 2010; 28(4):348-353.
  • [9]Henriksson J, Hench J, Tong YG, Johansson A, Johansson D, Burglin TR. Endrov: an integrated platform for image analysis. Nat Methods. 2013; 10(6):454-456.
  • [10]Boyle TJ, Bao Z, Murray JI, Araya CL, Waterston RH. AceTree: a tool for visual analysis of Caenorhabditis elegans embryogenesis. BMC Bioinformatics. 2006; 7:275. BioMed Central Full Text
  • [11]Saalfeld S, Cardona A, Hartenstein V, Tomancak P. CATMAID: collaborative annotation toolkit for massive amounts of image data. Bioinformatics. 2009; 25(15):1984-1986.
  • [12]Du Z, Santella A, He F, Tiongson M, Bao Z. De novo inference of systems-level mechanistic models of development from live-imaging-based phenotype analysis. Cell. 2014; 156(1–2):359-372.
  • [13]Long F, Peng H, Liu X, Kim SK, Myers E. A 3D digital atlas of C. elegans and its application to single-cell analyses. Nat Methods. 2009; 6(9):667-672.
  • [14]Szigeti B, Gleeson P, Vella M, Khayrulin S, Palyanov A, Hokanson J, Currie M, Cantarelli M, Idili G, Larson S. OpenWorm: an open-science approach to modeling Caenorhabditis elegans. Front Comput Neurosci. 2014; 8:137.
  • [15]Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Wang Q, Lau C, Kuan L, Henry AM et al.. A mesoscale connectome of the mouse brain. Nature. 2014; 508(7495):207-214.
  • [16]Peng H, Chung P, Long F, Qu L, Jenett A, Seeds AM, Myers EW, Simpson JH. BrainAligner: 3D registration atlases of Drosophila brains. Nat Methods. 2011; 8(6):493-500.
  • [17]Chisholm AD, Hardin J. Epidermal morphogenesis. 2005.
  • [18]Roh-Johnson M, Shemer G, Higgins CD, McClellan JH, Werts AD, Tulu US, Gao L, Betzig E, Kiehart DP, Goldstein B. Triggering a cell shape change by exploiting preexisting actomyosin contractions. Science. 2012; 335(6073):1232-1235.
  • [19]Pohl C, Tiongson M, Moore JL, Santella A, Bao Z. Actomyosin-based self-organization of cell internalization during C. elegans gastrulation. BMC Biol. 2012; 10:94. BioMed Central Full Text
  • [20]White JG, Southgate E, Thomson JN, Brenner S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond Ser B Biol Sci. 1986; 314(1165):1-340.
  • [21]Bao Z, Murray JI, Boyle T, Ooi SL, Sandel MJ, Waterston RH. Automated cell lineage tracing in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2006; 103(8):2707-2712.
  • [22]Wood WB. The Nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y; 1988.
  • [23]Harris TW, Baran J, Bieri T, Cabunoc A, Chan J, Chen WJ, Davis P, Done J, Grove C, Howe K et al.. WormBase 2014: new views of curated biology. Nucleic Acids Res. 2014; 42(Database issue):D789-D793.
  • [24]WormAtlas [http://www.wormatlas.org]
  • [25]Murray JI, Boyle TJ, Preston E, Vafeados D, Mericle B, Weisdepp P, Zhao Z, Bao Z, Boeck M, Waterston RH. Multidimensional regulation of gene expression in the C. elegans embryo. Genome Res. 2012; 22(7):1282-1294.
  • [26]Wu Y, Wawrzusin P, Senseney J, Fischer RS, Christensen R, Santella A, York AG, Winter PW, Waterman CM, Bao Z et al.. Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy. Nat Biotechnol. 2013; 31(11):1032-1038.
  • [27]Kumar A, Wu Y, Christensen R, Chandris P, Gandler W, McCreedy E, Bokinsky A, Colon-Ramos DA, Bao Z, McAuliffe M et al.. Dual-view plane illumination microscopy for rapid and spatially isotropic imaging. Nat Protoc. 2014; 9(11):2555-2573.
  • [28]Mosaliganti KR, Noche RR, Xiong F, Swinburne IA, Megason SG. ACME: automated cell morphology extractor for comprehensive reconstruction of cell membranes. PLoS Comput Biol. 2012; 8(12):e1002780.
  • [29]Moore JL, Du Z, Bao Z. Systematic quantification of developmental phenotypes at single-cell resolution during embryogenesis. Development. 2013; 140(15):3266-3274.
  • [30]Peng H, Long F, Liu X, Kim SK, Myers EW. Straightening Caenorhabditis elegans images. Bioinformatics. 2008; 24(2):234-242.
  • [31]Christensen R, Bokinsky A, Santella A, Wu Y, Marquina J, Kovacevic I, Kumar A, Winter P, McCreedy E, Mohler W et al.. An imaging and analysis toolset for the study of Caenorhabditiselegans neurodevelopment. 93340C-93340C-93349. 2015.
  • [32]Heckscher ES, Long F, Layden MJ, Chuang CH, Manning L, Richart J, Pearson JC, Crews ST, Peng H, Myers E et al.. Atlas-builder software and the eNeuro atlas: resources for developmental biology and neuroscience. Development. 2014; 141(12):2524-2532.
  文献评价指标  
  下载次数:60次 浏览次数:34次