BMC Bioinformatics | |
HiCdat: a fast and easy-to-use Hi-C data analysis tool | |
Marc W. Schmid1  Stefan Grob1  Ueli Grossniklaus1  | |
[1] Zurich-Basel Plant Science Center, Universitätstrasse 2, Zürich 8092, Switzerland | |
关键词: Correlation to (epi-)genome; Structural domains; Sample comparison; Data analysis; Hi-C; Nuclear architecture; Chromosome Conformation Capture (3C); | |
Others : 1229475 DOI : 10.1186/s12859-015-0678-x |
|
received in 2015-01-28, accepted in 2015-07-20, 发布年份 2015 |
【 摘 要 】
Background
The study of nuclear architecture using Chromosome Conformation Capture (3C) technologies is a novel frontier in biology. With further reduction in sequencing costs, the potential of Hi-C in describing nuclear architecture as a phenotype is only about to unfold. To use Hi-C for phenotypic comparisons among different cell types, conditions, or genetic backgrounds, Hi-C data processing needs to be more accessible to biologists.
Results
HiCdat provides a simple graphical user interface for data pre-processing and a collection of higher-level data analysis tools implemented in R. Data pre-processing also supports a wide range of additional data types required for in-depth analysis of the Hi-C data (e.g. RNA-Seq, ChIP-Seq, and BS-Seq).
Conclusions
HiCdat is easy-to-use and provides solutions starting from aligned reads up to in-depth analyses. Importantly, HiCdat is focussed on the analysis of larger structural features of chromosomes, their correlation to genomic and epigenomic features, and on comparative studies. It uses simple input and output formats and can therefore easily be integrated into existing workflows or combined with alternative tools.
【 授权许可】
2015 Schmid et al.
Files | Size | Format | View |
---|---|---|---|
Fig. 1. | 169KB | Image | download |
Fig. 1. | 169KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 1.
【 参考文献 】
- [1]Dekker J, Marti-Renom MA, Mirny LA. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat Rev Genet. 2013; 14:390-403.
- [2]Duan Z, Andronescu M, Schutz K, McIlwain S, Kim YJ, Lee C et al.. A three-dimensional model of the yeast genome. Nature. 2010; 465:363-7.
- [3]Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y et al.. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 2012; 485:376-80.
- [4]Moissiard G, Cokus SJ, Cary J, Feng S, Billi AC, Stroud H et al.. MORC family ATPases required for heterochromatin condensation and gene silencing. Science. 2012; 336(6087):1448-51.
- [5]Grob S, Schmid MW, Grossniklaus U. Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila. Mol Cell. 2014; 55(5):678-93.
- [6]Feng S, Cokus SJ, Schubert V, Zhai J, Pellegrini M, Jacobsen SE. Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis. Mol Cell. 2014; 55(5):694-707.
- [7]HiCUP. http://www. bioinformatics.babraham.ac.uk/projects/hicup/ webcite
- [8]Phanstiel DH, Boyle AP, Araya CL, Snyder MP. Sushi.r: flexible, quantitative and integrative genomic visualizations for publication-quality multi-panel figures. Bioinformatics. 2014; 30(19):2808-10.
- [9]Servant N, Lajoie BR, Nora EP, Giorgetti L, Chen C, Heard E et al.. HiTC : exploration of high-throughput ‘C’ experiments. Bioinformatics. 2012; 28(21):2843-4.
- [10]Lévy-Leduc C, Delattre M, Mary-Huard T, Robin S. Two-dimensional segmentation for analyzing Hi-C data. Bioinformatics. 2014; 30:386-92.
- [11]Shavit Y, Lio P. Combining a wavelet change point and the Bayes factor for analysing chromosomal interaction data. Mol Biosyst. 2014; 10(6):1576-85.
- [12]Yaffe E, Tanay A. Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nat Genet. 2011; 43(11):1059-65.
- [13]Hu M, Deng K, Selvaraj S, Qin ZS, Ren B, Liu JS. HiCNorm: removing biases in Hi-C data via Poisson regression. Bioinformatics. 2012; 28(23):3131-3.
- [14]Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P et al.. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010; 38(4):576-89.
- [15]Imakaev M, Fudenberg G, McCord RP, Naumova N, Goloborodko A, Lajoie BR et al.. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat Methods. 2012; 9(10):999-1003.
- [16]Paulsen J, Sandve GK, Gundersen S, Lien TG, Trengereid K, Hovig E. HiBrowse: multi-purpose statistical analysis of genome-wide chromatin 3D organization. Bioinformatics. 2014; 30(11):1620-22.
- [17]R-Project. http://www. r-project.org/ webcite
- [18]Liao Y, Smyth GK, Shi W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 2013; 41(10):108.
- [19]Jin F, Li Y, Dixon JR, Selvaraj S, Ye Z, Lee AY et al.. A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature. 2013; 503:290-4.
- [20]Liebermann-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A et al.. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009; 326(5950):289-93.
- [21]Zhang Y, McCord RP, Ho YJ, Lajoie BR, Hildebrand DG, Simon AC et al.. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell. 2012; 148(5):908-21.
- [22]Grob S, Schmid MW, Grossniklaus U. Characterization of chromosomal architecture in Arabidopsis by chromosome conformation capture. Genome Biol. 2013; 14:129. BioMed Central Full Text
- [23]Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009; 10:25. BioMed Central Full Text
- [24]Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012; 9(4):357-9.
- [25]Kasschau KD, Fahlgren N, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA et al.. Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biol. 2007; 5(3):57.
- [26]Gregory BD, O’Malley RC, Lister R, Urich MA, Tonti-Filippini J, Chen H et al.. A link between RNA metabolism and silencing affecting Arabidopsis development. Dev Cell. 2008; 14(6):854-66.
- [27]Lister R, O’Malley RC, Tonti-Filippini J, Gregory BG, Berry CC, Millar AH et al.. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell. 2008; 133(3):523-36.
- [28]Jacob Y, Stroud H, LeBlanc C, Feng S, Zhuo L, Caro E et al.. Regulation of heterochromatic DNA replication by histone H3 lysine 27 methyltransferases. Nature. 2010; 466:987-1.
- [29]Luo C, Sidote DJ, Zhang Y, Kerstetter RA, Michael TP, Lam E. Integrative analysis of chromatin states in Arabidopsis identified potential regulatory mechanisms for natural antisense transcript production. Plant J. 2013; 73:77-90.
- [30]Stroud H, Greenberg MVC, Feng S, Bernatavichute YV, Jacobsen SE. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell. 2013; 152(1–2):352-64.