期刊论文详细信息
Biology Direct
Cooperation and selfishness both occur during molecular evolution
David Penny1 
[1]Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
关键词: Natural selection;    Origin of life;    Molecular level;    Molecular evolution;    Cooperation;   
Others  :  1084075
DOI  :  10.1186/s13062-014-0026-5
PDF
【 摘 要 】

Perhaps the ‘selfish’ aspect of evolution has been over-emphasised, and organisms considered as basically selfish. However, at the macromolecular level of genes and proteins the cooperative aspect of evolution is more obvious and balances this self-centred aspect. Thousands of proteins must function together in an integrated manner to use and to produce the many molecules necessary for a functioning cell. The macromolecules have no idea whether they are functioning cooperatively or competitively with other genes and gene products (such as proteins). The cell is a giant cooperative system of thousands of genes/proteins that function together, even if it has to simultaneously resist ‘parasites’. There are extensive examples of cooperative behavior among genes and proteins in both functioning cells and in the origin of life, so this cooperative nature, along with selfishness, must be considered part of normal evolution. The principles also apply to very large numbers of examples of ‘positive interactions’ between organisms, including both eukaryotes and akaryotes (prokaryotes). This does not negate in any way the ‘selfishness’ of genes – but macromolecules have no idea when they are helping, or hindering, other groups of macromolecules. We need to assert more strongly that genes, and gene products, function together as a cooperative unit.

Reviewers This article was reviewed by Prof. Bill Martin (Düsseldorf), Dr. Nicolas Galtier (Montpellier) and Dr. Anthony Poole (Christchurch).

【 授权许可】

   
2014 Penny; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113144153387.pdf 270KB PDF download
【 参考文献 】
  • [1]Dugatkin LA: Cooperation in animals: an evolutionary overview. Biol Philos 2002, 17:459-476.
  • [2]de Waal F: The Bonobo and the Atheist. Norton, New York; 2013.
  • [3]Ruse M: The Darwinian Revolution: Science red in Tooth and Claw. 2nd edition. University of Chicago Press, Chicago; 1999.
  • [4]Dawkins R: The Selfish Gene. Oxford University Press, Oxford; 1976.
  • [5]Calcott B: The other cooperation problem: generating benefit. Biol Philos 2008, 23:179-203.
  • [6]Penny D, Poole AM: Lateral gene transfer: some theoretical aspects. New Zealand BioScience 2003, 12:32-35.
  • [7]Raven JA, Beardall J, Larkum AWD, Sanchez-Baracaldo P: Interactions of photosynthesis with genome size and function. Phil Trans R Soc B-Biol Sci 2013, 368:#20120264.
  • [8]Koonin EV, Senkevich TG, Dolja VV: The ancient virus world and evolution of cells. Biol Direct 2006, 1:29. doi:10.1186/1745-6150-1-29 BioMed Central Full Text
  • [9]Hall KB: Protein binding cannot subdue a lively RNA. Nature 2014, 506:303-304.
  • [10][http://dx.doi.org/10.1098/rsob.130156] webcite Pascal R, Pross A, Sutherland JD: Towards an evolutionary theory of the origin of life based on kinetics and thermodynamics.Open Biology 2013, 130156. .
  • [11]Eigen M: Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 1971, 58:465-523.
  • [12]Eigen M, Schuster P: Part A: emergence of the hypercycle. Naturwissenschaften 1978, 65:7-41.
  • [13]Maynard Smith J: Hypercycles and the origin of life. Nature 1979, 280:445-446.
  • [14]Villarreal LP, Witzany G: Rethinking quasispecies theory: from fittest type to cooperative consortia. World J Biol Chem 2013, 4:79-90.
  • [15]Penny D: An interpretive review of the origin of life research. Biol Phil 2005, 20:633-671.
  • [16]Kun A, Santos M, Szathmary E: Real ribozymes suggest a relaxed error threshold. Nature Gen 2005, 37:1008-1011.
  • [17]Drake JW: The distribution of rates of spontaneous mutation over viruses, prokaryotes and eukaryotes. Ann NY Acad Sci 1999, 870:100-107.
  • [18]Holmes EC: The Evolution and Emergence of RNA Viruses. Oxford Univ. Press, Oxford; 2009.
  • [19]Crotty S, Cameron CE, Andino R: RNA virus error catastrophe: direct molecular test by using ribavirin. Proc Natl Acad Sci U S A 2001, 98:6895-6900.
  • [20]Boerlijst MC, Hogeweg P: Spiral wave structure in pre-biotic evolution hypercycles stable against parasites. Physica D 1991, 48:17-28.
  • [21]Van Dyken JD, Muller MJI, Mack KML, Desai MM: Spatial population expansion promotes the evolution of cooperation in an experimental prisoner’s dilemma. Curr Biol 2013, 23:919-923.
  • [22]Vaidya N, Manapat M, Chen IA, Xulvi-Brunet R, Hayden EJ, Lehman N: Spontaneous network formation among cooperative RNA replicators. Nature 2012, 491:72-77.
  • [23]Attwater J, Holliger P: The cooperative gene. Nature 2012, 491:48-49.
  • [24]Steel M: The emergence of a self-catalysing structure in abstract origin-of-life models. Appl Math Lett 2000, 3:91-95.
  • [25]Hordijk W, Steel M: A formal model of autocatalytic sets emerging in an RNA replicator model. J Systems Chem 2013, 4:3. BioMed Central Full Text
  • [26]Glansdorff P, Prigogine I: Thermodynamic Theory of Structure, Stability and Fluctuations. Wiley-Interscience, London; 1971.
  • [27]Woese CR: On the evolution of cells. Proc Natl Acad Sci U S A 2002, 99:8742-8747.
  • [28]Kim G, LeBlanc ML, Wafula EK, dePamphilis CW, Westwood JH: Genomic-scale exchange of mRNA between a parasitic plant and its hosts. Science 2014, 345:808-811.
  • [29]Penny D, Collins LJ, Daly L, Cox SJ: The relative ages of Eukaryotes and Akaryotes. J Mol Evol 2014.
  • [30]Lan R, Reeves PR: Intraspecies variation in bacterial genomes: the need for a species genome concept. Trends Microbiol 2000, 8:396-401.
  • [31]Rokas A: The origins of multicellularity and the early history of the genetic toolkit for animal development. Annu Rev Genet 2008, 42:235-251.
  • [32]Niklas KJ: The evolutionary-developmental origins of multicellularity. Am J Bot 2014, 101:6-25.
  • [33]Hamilton WD: The genetical evolution of social behavior, I and II. J Theoret Biol 1964, 7:1-52.
  • [34]Allen B, Nowak MA, Wilson EO: Limitations of inclusive fitness. Proc Natl Acad Sci U S A 2013, 110:20135-20139.
  • [35]Wernegreen JJ: Endosymbiosis. Curr Biol 2012, 22:R555-R561.
  • [36]Lozupone CA, Stombaugh J, Gonzalez A, Ackermann G, Wendel D, Vázquez-Baeza Y, Jansson JK, Gordon JI, Knight R: Meta-analyses of studies of the human microbiota. Genome Res 2013, 23:1704-1714. (8 authors)
  • [37]Remis JP, Wei D, Gorur A, Zemla M, Haraga J, Allen S, Witkowska HE, Costerton JW, Berleman JE, Auer M: Bacterial social networks: structure and composition of Myxococcus xanthus outer membrane vesicle chains. Environ Microbiol 2014, 16:598-610. doi:10.1111/1462-2920.12187
  • [38]Dimitriu T, Lotton C, Bénard-Capelle J, Misevic D, Brown SP, Lindner AB, Taddei F: Genetic information transfer promotes cooperation in bacteria. Proc Natl Acad Sci U S A 2014, 111:11103-11108.
  • [39]Wall D: Molecular recognition in myxobacterial outer membrane exchange: functional, social and evolutionary implications. Environ Microbiol 2014, 91:209-220.
  • [40]Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG: Algae acquire vitamin B-12 through a symbiotic relationship with bacteria. Nature 2005, 438:90-93.
  • [41]Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R, Charron P, Duensing N, Frei dit Frey N, Gianinazzi-Pearson V, Gilbert LB, Handa Y, Herr JR, Hijri M, Koul R, Kawaguchi M, Krajinski F, Lammers PJ, Masclaux FG, Murat C, Morin E, Ndikumana S, Pagni M, Petitpierre D, Requena N, Rosikiewicz P, Riley R, Saito K, San Clemente H, Shapiro H, et al.: Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci U S A 2013, 110:20117-20122.
  • [42]Zhang NX, Scott V, Al-Samarrai TH, Tan YY, Spiering MJ, McMillan LK, Lane GA, Scott DB, Christensen MJ, Schmid J: Transformation of the ryegrass endophyte Neotyphodium lolii can alter its in planta mycelial morphology. Mycol Res 2006, 110:601-611.
  • [43]Wilson MC, Mori T, Rückert C, Uria AR, Helf MJ, Takada K, Gernert C, Steffens UAE, Heycke N, Schmitt S, Rinke C, Helfrich EJN, Brachmann AO, Gurgui C, Wakimoto T, Kracht M, Crüsemann M, Hentschel U, Abe I, Matsunaga S, Kalinowski J, Takeyama H, Piel J: An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 2014, 506:58-62.
  • [44]Nash TH: Lichen Biology. Cambridge Univ. Press, Cambridge; 1996.
  • [45]Santi C, Bogusz D, Franche C: Biological nitrogen fixation in non-legume plants. Ann Bot 2013, 111:743-767.
  • [46]Dorrell RG, Howe CJ: Functional remodeling of RNA processing in replacement chloroplasts by pathways retained from their predecessors. Proc Natl Acad Sci U S A 2012, 109:18879-18884.
  • [47]McCutcheon JP, Moran NA: Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 2012, 10:13-26.
  • [48]Muijres FT, Dickinson MH: Fly with a little flap from your friends. Nature 2014, 505:295-296.
  • [49]Feeney WE, Medina I, Somveille M, Heinsohn R, Hall ML, Mulder RA, Stein JA, Kilner RM, Langmore NE: Brood parasitism and the evolution of cooperative breeding in birds. Science 2013, 342:1506-1508.
  • [50]Hemelrijk CK, Reid DAP, Hildenbrandt H, Padding JT: The increased efficiency of fish swimming in a school.Fish and Fisheries 2014. doi:10.1111/faf.12072.
  • [51]Penny D: Charles Darwin as a theoretical biologist in the mechanistic tradition. Trends Evol Biol 2009, 1:e1.
  • [52]Carlson CJ, Cizauskas CA, Burgio KR, Clements CF, Harris NC: The more parasites the better? Science 2013, 342:1041.
  • [53]Reynolds SE: Immunity and invasive success. Science 2013, 340:816-817.
  • [54]Penny D: Darwin’s theory of descent with modification versus the biblical Tree of Life. PLoS Biol 2011, 9:e1001096.
  • [55]Ridley M: The Cooperative Gene: how Mendel’s Demon Explains the Evolution of Complex Beings. The Free Press, New York; 2001.
  • [56]Aanen DK, Bisseling T: The birth of cooperation. Science 2014, 345:29-30.
  • [57]Sterelny K, Joyce R, Calcott B, Fraser B, Joyce R: Cooperation and its Evolution. MIT Press, Cambridge MA; 2013.
  • [58]Birch J: How cooperation became the norm. Biol Philos 2014, 29:433-444.
  • [59]Nowak MA: Generosity: a winner’s advice. Nature 2008, 456:579.
  • [60]Nowak MA: Five rules for the evolution of cooperation. Science 2006, 314:1560-1563.
  • [61]Maynard Smith J, Szathmary E: The Major Transitions in Evolution. Oxford Univ Press, Oxford; 1995.
  • [62]Calcott B, Sterelny K: The Major Transitions in Evolution Revisited. MIT Press, Cambridge MA; 2011.
  文献评价指标  
  下载次数:3次 浏览次数:12次