期刊论文详细信息
Annals of Occupational and Environmental Medicine
Travelling at a slug’s pace: possible invertebrate vectors of Caenorhabditis nematodes
Carola Petersen1  Ruben Joseph Hermann1  Mike-Christoph Barg1  Rebecca Schalkowski1  Philipp Dirksen1  Camilo Barbosa1  Hinrich Schulenburg1 
[1] Department of Evolutionary Ecology and Genetics, Zoological Institute Christian-Albrechts University, Am Botanischen Garten 1-9, Kiel, 24118, Germany
关键词: Ephemeral habitats;    Vector-mediated migration;    Arion;    Parasitism;    Commensalism;    Phoresy;    Caenorhabditis remanei;    Caenorhabditis elegans;   
Others  :  1219979
DOI  :  10.1186/s12898-015-0050-z
 received in 2015-02-21, accepted in 2015-06-18,  发布年份 2015
PDF
【 摘 要 】

Background

How do very small animals with limited long-distance dispersal abilities move between locations, especially if they prefer ephemeral micro-habitats that are only available for short periods of time? The free-living model nematode Caenorhabditis elegans and several congeneric taxa appear to be common in such short-lived environments, for example decomposing fruits or other rotting plant material. Dispersal is usually assumed to depend on animal vectors, yet all current data is based on only a limited number of studies. In our project we performed three comprehensive field surveys on possible invertebrate vectors in North German locations containing populations of C. elegans and two related species, especially C. remanei, and combined these screens with an experimental analysis of persistence in one of the vector taxa.

Results

Our field survey revealed that Caenorhabditis nematodes are commonly found in slugs, isopods, and chilopods, but are not present in the remaining taxonomic groups examined. Surprisingly, the nematodes were frequently isolated from the intestines of slugs, even if slugs were not collected in close association with suitable substrates for Caenorhabditis proliferation. This suggests that the nematodes are able to enter the slug intestines and persist for certain periods of time. Our experimental analysis confirmed the ability of C. elegans to invade slug intestines and subsequently be excreted alive with the slug feces, although only for short time periods under laboratory conditions.

Conclusions

We conclude that three invertebrate taxonomic groups represent potential vectors of Caenorhabditis nematodes. The nematodes appear to have evolved specific adaptations to enter and persist in the harsh environment of slug intestines, possibly indicating first steps towards a parasitic life-style.

【 授权许可】

   
2015 Petersen et al.

【 预 览 】
附件列表
Files Size Format View
20150721012335621.pdf 1196KB PDF download
Figure5. 13KB Image download
Figure4. 31KB Image download
Figure3. 29KB Image download
Figure2. 21KB Image download
Figure1. 13KB Image download
【 图 表 】

Figure1.

Figure2.

Figure3.

Figure4.

Figure5.

【 参考文献 】
  • [1]Petersen C, Dirksen P, Schulenburg H. Why we need more ecology for genetic models such as C. elegans. Trends Genet. 2015; 31:120-127.
  • [2]Caswell-Chen EP. Revising the standard wisdom of C. elegans natural history: ecology of longevity. Sci ging Knowl Environ. 2005; 2005:pe30.
  • [3]Félix M-A, Braendle C. The natural history of Caenorhabditis elegans. Curr Biol. 2010; 20:R965-R969.
  • [4]Félix M-A, Duveau F. Population dynamics and habitat sharing of natural populations of Caenorhabditis elegans and C. briggsae. BMC Biol. 2012; 10:59. BioMed Central Full Text
  • [5]Haber M, Schüngel M, Putz A, Müller S, Hasert B, Schulenburg H. Evolutionary history of Caenorhabditis elegans inferred from microsatellites: evidence for spatial and temporal genetic differentiation and the occurrence of outbreeding. Mol Biol Evol. 2005; 22:160-173.
  • [6]Petersen C, Dirksen P, Prahl S, Strathmann EA, Schulenburg H. The prevalence of Caenorhabditis elegans across 1.5 years in selected North German locations: the importance of substrate type, abiotic parameters, and Caenorhabditis competitors. BMC Ecol. 2014; 14:4. BioMed Central Full Text
  • [7]Viney ME, Gardner MP, Jackson JA. Variation in Caenorhabditis elegans dauer larva formation. Dev Growth Differ. 2003; 45:389-396.
  • [8]Green JWM, Snoek LB, Kammenga JE, Harvey SC. Genetic mapping of variation in dauer larvae development in growing populations of Caenorhabditis elegans. Heredity. 2013; 111:306-313.
  • [9]Lee H, Choi M, Lee D, Kim H, Hwang H, Kim H et al.. Nictation, a dispersal behavior of the nematode Caenorhabditis elegans, is regulated by IL2 neurons. Nat Neurosci. 2012; 15:107-112.
  • [10]Erkut C, Penkov S, Khesbak H, Vorkel D, Verbavatz J-M, Fahmy K et al.. Trehalose renders the dauer larva of Caenorhabditis elegans resistant to extreme desiccation. Curr Biol. 2011; 21:1331-1336.
  • [11]Kiontke K, Sudhaus W (2006) Ecology of Caenorhabditis species. In: WormBook (ed) The C. elegans research community. WormBook. doi:. http://www. [10.1895/wormbook.1.37.1] webcitewormbook.org webcite
  • [12]Baird SE. Natural and experimental associations of Caenorhabditis remanei with Trachelipus rathkii and other terrestrial isopods. Nematology. 1999; 1(5):471-475.
  • [13]Barrière A, Félix M-A. High local genetic diversity and low outcrossing rate in Caenorhabditis elegans natural populations. Curr Biol. 2005; 15:1176-1184.
  • [14]Ross JL, Ivanova ES, Sirgel WF, Malan AP, Wilson MJ. Diversity and distribution of nematodes associated with terrestrial slugs in the Western Cape Province of South Africa. J Helminthol. 2012; 86:215-221.
  • [15]Okumura E, Tanaka R, Yoshiga T. Species-specific recognition of the carrier insect by dauer larvae of the nematode Caenorhabditis japonica. J Exp Biol. 2013; 216:568-572.
  • [16]Barrière A, Félix M-A. Temporal dynamics and linkage disequilibrium in natural Caenorhabditis elegans populations. Genetics. 2007; 176:999-1011.
  • [17]Mengert DH. Nematoden und Schnecken. Z Für Morphol Ökol Tiere. 1953; 41:311-349.
  • [18]Ross JL, Ivanova ES, Severns PM, Wilson MJ. The role of parasite release in invasion of the USA by European slugs. Biol Invasions. 2010; 12:603-610.
  • [19]Ross JL, Ivanova ES, Spiridonov SE, Waeyenberge L, Moens M, Nicol GW et al.. Molecular phylogeny of slug-parasitic nematodes inferred from 18S rRNA gene sequences. Mol Phylogenet Evol. 2010; 55:738-743.
  • [20]Barrière A, Félix M-A (2006) Isolation of C. elegans and related nematodes. In: WormBook (ed) The C. elegans research community. WormBook. doi:. http://www. [10.1895/wormbook.1.43.1] webcitewormbook.org webcite
  • [21]Seidel HS, Rockman MV, Kruglyak L. Widespread genetic incompatibility in C. elegans maintained by balancing selection. Science. 2008; 319:589-594.
  • [22]Pujol N, Cypowyj S, Ziegler K, Millet A, Astrain A, Goncharov A et al.. Distinct innate immune responses to infection and wounding in the C. elegans epidermis. Curr Biol. 2008; 18:481-489.
  • [23]Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994; 3:294-299.
  • [24]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990; 215:403-410.
  • [25]Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc. 1995; 57(1):289-300.
  • [26]Chen J, Lewis EE, Carey JR, Caswell H, Caswell-Chen EP. The ecology and biodemography of Caenorhabditis elegans. Exp Gerontol. 2006; 41:1059-1065.
  • [27]Denny M. Locomotion: the cost of gastropod crawling. Science. 1980; 208:1288-1290.
  • [28]McDonnell R (2009) Slugs: a Guide to the Invasive and Native Fauna of California. UCANR Publications. http://anrcatalog. ucdavis.edu/pdf/8336.pdf webcite
  • [29]Denny MW, Gosline JM. The physical properties of the pedal mucus of the terrestrial slug Ariolimax columbianus. J Exp Biol. 1980; 88:375-394.
  • [30]Poinar GO, Marshall CJ, Buckley R. One hundred million years of chemical warfare by insects. J Chem Ecol. 2007; 33:1663-1669.
  • [31]Machado G, Carrera PC, Pomini AM, Marsaioli AJ. Chemical defense in harvestmen (arachnida, opiliones): do benzoquinone secretions deter invertebrate and vertebrate predators? J Chem Ecol. 2005; 31:2519-2539.
  • [32]McGaughran A, Morgan K, Sommer RJ. Natural variation in chemosensation: lessons from an island nematode. Ecol Evol. 2013; 3:5209-5224.
  • [33]Grewal PS, Grewal SK, Tan L, Adams BJ. Parasitism of molluscs by nematodes: types of associations and evolutionary trends. J Nematol. 2003; 35:146-156.
  • [34]Blaxter M, Koutsovoulos G. The evolution of parasitism in Nematoda. Parasitology. 2014; 142:S26-S39.
  • [35]Rae R, Verdun C, Grewal PS, Robertson JF, Wilson MJ. Biological control of terrestrial molluscs using Phasmarhabditis hermaphrodita—progress and prospects. Pest Manag Sci. 2007; 63:1153-1164.
  • [36]Tan L, Grewal PS. Endotoxin activity of Moraxella osloensis against the grey garden slug Deroceras reticulatum. Appl Environ Microbiol. 2002; 68:3943-3947.
  文献评价指标  
  下载次数:68次 浏览次数:28次