期刊论文详细信息
Biotechnology for Biofuels
Hydrogen peroxide-independent production of α-alkenes by OleTJE P450 fatty acid decarboxylase
Yi Liu1  Cong Wang2  Jinyong Yan2  Wei Zhang2  Wenna Guan2  Xuefeng Lu2  Shengying Li2 
[1] University of Chinese Academy of Sciences, Beijing 100049, China
[2] Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong 266101, China
关键词: Peroxygenase;    P450 fatty acid decarboxylase;    Monooxygenase;    Biofuels;    Alkenes;   
Others  :  793478
DOI  :  10.1186/1754-6834-7-28
 received in 2013-11-21, accepted in 2014-02-10,  发布年份 2014
PDF
【 摘 要 】

Background

Cytochrome P450 OleTJE from Jeotgalicoccus sp. ATCC 8456, a new member of the CYP152 peroxygenase family, was recently found to catalyze the unusual decarboxylation of long-chain fatty acids to form α-alkenes using H2O2 as the sole electron and oxygen donor. Because aliphatic α-alkenes are important chemicals that can be used as biofuels to replace fossil fuels, or for making lubricants, polymers and detergents, studies on OleTJE fatty acid decarboxylase are significant and may lead to commercial production of biogenic α-alkenes in the future, which are renewable and more environmentally friendly than petroleum-derived equivalents.

Results

We report the H2O2-independent activity of OleTJE for the first time. In the presence of NADPH and O2, this P450 enzyme efficiently decarboxylates long-chain fatty acids (C12 to C20) in vitro when partnering with either the fused P450 reductase domain RhFRED from Rhodococcus sp. or the separate flavodoxin/flavodoxin reductase from Escherichia coli. In vivo, expression of OleTJE or OleTJE-RhFRED in different E. coli strains overproducing free fatty acids resulted in production of variant levels of multiple α-alkenes, with a highest total hydrocarbon titer of 97.6 mg·l-1.

Conclusions

The discovery of the H2O2-independent activity of OleTJE not only raises a number of fundamental questions on the monooxygenase-like mechanism of this peroxygenase, but also will direct the future metabolic engineering work toward improvement of O2/redox partner(s)/NADPH for overproduction of α-alkenes by OleTJE.

【 授权许可】

   
2014 Liu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705052139829.pdf 909KB PDF download
Figure 6. 59KB Image download
Figure 5. 52KB Image download
Figure 4. 47KB Image download
Figure 3. 49KB Image download
Figure 2. 73KB Image download
Figure 1. 39KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Shafiee S, Topal E: When will fossil fuel reserves be diminished? Energy Policy 2009, 37:181-189.
  • [2]Stephanopoulos G: Challenges in engineering microbes for biofuels production. Science 2007, 315:801-804.
  • [3]Kerr RA: Global warming is changing the world. Science 2007, 316:188-190.
  • [4]Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD: Microbial engineering for the production of advanced biofuels. Nature 2012, 488:320-328.
  • [5]Lee SK, Chou H, Ham TS, Lee TS, Keasling JD: Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 2008, 19:556-563.
  • [6]Savage DF, Way J, Silver PA: Defossiling fuel: how synthetic biology can transform biofuel production. ACS Chem Biol 2008, 3:13-16.
  • [7]Demain AL: Biosolutions to the energy problem. J Ind Microbiol Biotechnol 2009, 36:319-332.
  • [8]Fortman JL, Chhabra S, Mukhopadhyay A, Chou H, Lee TS, Steen E, Keasling JD: Biofuel alternatives to ethanol: pumping the microbial well. Trends Biotechnol 2008, 26:375-381.
  • [9]Li H, Cann AF, Liao JC: Biofuels: biomolecular engineering fundamentals and advances. Annu Rev Chem Biomol Eng 2010, 1:19-36.
  • [10]Wackett LP: Biomass to fuels via microbial transformations. Curr Opin Chem Biol 2008, 12:187-193.
  • [11]Zhang F, Rodriguez S, Keasling JD: Metabolic engineering of microbial pathways for advanced biofuel production. Curr Opin Biotechnol 2011, 22:775-783.
  • [12]Qiu Y, Tittiger C, Wicker-Thomas C, Le Goff G, Young S, Wajnberg E, Fricaux T, Taquet N, Blomquist GJ, Feyereisen R: An insect-specific P450 oxidative decarbonylase for cuticular hydrocarbon biosynthesis. Proc Natl Acad Sci USA 2012, 109:14858-14863.
  • [13]Niehaus TD, Okada S, Devarenne TP, Watt DS, Sviripa V, Chappell J: Identification of unique mechanisms for triterpene biosynthesis in Botryococcus braunii. Proc Natl Acad Sci USA 2011, 108:12260-12265.
  • [14]Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB: Microbial biosynthesis of alkanes. Science 2010, 329:559-562.
  • [15]Beller HR, Goh EB, Keasling JD: Genes involved in long-chain alkene biosynthesis in Micrococcus luteus. Appl Environ Microbiol 2010, 76:1212-1223.
  • [16]Rude MA, Baron TS, Brubaker S, Alibhai M, del Cardayre SB, Schirmer A: Terminal olefin (1-alkene) biosynthesis by a novel P450 fatty acid decarboxylase from Jeotgalicoccus species. Appl Environ Microbiol 2011, 77:1718-1727.
  • [17]Alibhai MF, Rude MA, Schirmer A: Methods and compositions for producing olefins. 20110196180 A1 (Patent) 2012
  • [18]Mendez-Perez D, Begemann MB, Pfleger BF: Modular synthase-encoding gene involved in α-olefin biosynthesis in Synechococcus sp. strain PCC 7002. Appl Environ Microbiol 2011, 77:4264-4267.
  • [19]Gu L, Wang B, Kulkarni A, Gehret JJ, Lloyd KR, Gerwick L, Gerwick WH, Wipf P, Håkansson K, Smith JL, Sherman DH: Polyketide decarboxylative chain termination preceded by O-sulfonation in curacin A biosynthesis. J Am Chem Soc 2009, 131:16033-16035.
  • [20]Howard TP, Middelhaufe S, Moore K, Edner C, Kolak DM, Taylor GN, Parker DA, Lee R, Smirnoff N, Aves SJ, Love J: Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli. Proc Natl Acad Sci USA 2013, 110:7636-7641.
  • [21]Lennen RM, Pfleger BF: Engineering Escherichia coli to synthesize free fatty acids. Trends Biotechnol 2012, 30:659-667.
  • [22]Youngquist JT, Lennen RM, Ranatunga DR, Bothfeld WH, Marner WD II, Pfleger BF: Kinetic modeling of free fatty acid production in Escherichia coli based on continuous cultivation of a plasmid free strain. Biotechnol Bioeng 2012, 109:1518-1527.
  • [23]Popov YV, Uskach YL, Ledenev SM, Kroman DA, Pavlova VA: Synthesis of a sulfur-containing additive to transmission lubricants based on the С20–С26 fraction of α-olefins. Russ J Appl Chem 2013, 86:447-449.
  • [24]Kioupis LI, Maginn EJ: Molecular simulation of poly-α-olefin synthetic lubricants: impact of molecular architecture on performance properties. J Phys Chem B 1999, 103:10781-10790.
  • [25]Coon MJ: Cytochrome P450: nature’s most versatile biological catalyst. Annu Rev Pharmacol Toxicol 2005, 45:1-25.
  • [26]Munro AW, Girvan HM, McLean KJ: Variations on a (t)heme-novel mechanisms, redox partners and catalytic functions in the cytochrome P450 superfamily. Nat Prod Rep 2007, 24:585-609.
  • [27]Poulos TL, Johnson EF: Cytochrome P450: Structure, Mechanism, and Biochemistry. 3rd edition. New York: Kluwer Academic/Plenum Publishers; 2005.
  • [28]Matsunaga I, Sumimoto T, Ueda A, Kusunose E, Ichihara K: Fatty acid-specific, regiospecific, and stereospecific hydroxylation by cytochrome P450 (CYP152B1) from Sphingomonas paucimobilis: substrate structure required for α-hydroxylation. Lipids 2000, 35:365-371.
  • [29]Matsunaga I, Ueda A, Fujiwara N, Sumimoto T, Ichihara K: Characterization of the ybdT gene product of Bacillus subtilis: novel fatty acid β-hydroxylating cytochrome P450. Lipids 1999, 34:841-846.
  • [30]Joo H, Lin Z, Arnold FH: Laboratory evolution of peroxide-mediated cytochrome P450 hydroxylation. Nature 1999, 399:670-673.
  • [31]Cirino PC, Arnold FH: A self-sufficient peroxide-driven hydroxylation biocatalyst. Angew Chem Intl Ed 2003, 42:3299-3301.
  • [32]Andre C, Kim SW, Yu X-H, Shanklin J: Fusing catalase to an alkane-producing enzyme maintains enzymatic activity by converting the inhibitory byproduct H2O2 to the cosubstrate O2. Proc Natl Acad Sci USA 2013, 110:3191-3196.
  • [33]Roberts GA, Grogan G, Greter A, Flitsch SL, Turner NJ: Identification of a new class of cytochrome P450 from a Rhodococcus sp. J Bacteriol 2002, 184:3898-3908.
  • [34]Lee DS, Yamada A, Sugimoto H, Matsunaga I, Ogura H, Ichihara K, Adachi S, Park SY, Shiro Y: Substrate recognition and molecular mechanism of fatty acid hydroxylation by cytochrome P450 from Bacillus subtilis. Crystallographic, spectroscopic, and mutational studies. J Biol Chem 2003, 278:9761-9767.
  • [35]Shoji O, Fujishiro T, Nakajima H, Kim M, Nagano S, Shiro Y, Watanabe Y: Hydrogen peroxide dependent monooxygenations by tricking the substrate recognition of cytochrome P450BSβ. Angew Chem Intl Ed 2007, 46:3656-3659.
  • [36]Fujishiro T, Shoji O, Nagano S, Sugimoto H, Shiro Y, Watanabe Y: Crystal structure of H2O2-dependent cytochrome P450SPα with its bound fatty acid substrate: insight into the regioselective hydroxylation of fatty acids at a position. J Biol Chem 2011, 286:29941-29950.
  • [37]Munro AW, Girvan HM, Mason AE, Dunford AJ, McLean KJ: What makes a P450 tick? Trends Biochem Sci 2013, 38:140-150.
  • [38]Hrycay EG, Bandiera SM: The monooxygenase, peroxidase, and peroxygenase properties of cytochrome P450. Arch Biochem Biophys 2012, 522:71-89.
  • [39]Matsunaga I, Sumimoto T, Ayata M, Ogura H: Functional modulation of a peroxygenase cytochrome P450: novel insight into the mechanisms of peroxygenase and peroxidase enzymes. FEBS Lett 2002, 528:90-94.
  • [40]Schlichting I, Berendzen J, Chu K, Stock AM, Maves SA, Benson DE, Sweet RM, Ringe D, Petsko GA, Sligar SG: The catalytic pathway of cytochrome P450cam at atomic resolution. Science 2000, 287:1615-1622.
  • [41]Girhard M, Schuster S, Dietrich M, Duerre P, Urlacher VB: Cytochrome P450 monooxygenase from Clostridium acetobutylicum: a new α-fatty acid hydroxylase. Biochem Biophys Res Comm 2007, 362:114-119.
  • [42]Netto LE, Stadtman ER: The iron-catalyzed oxidation of dithiothreitol is a biphasic process: hydrogen peroxide is involved in the initiation of a free radical chain of reactions. Arch Biochem Biophys 1996, 333:233-242.
  • [43]Lu X, Vora H, Khosla C: Overproduction of free fatty acids in E. coli: implications for biodiesel production. Metab Eng 2008, 10:333-339.
  • [44]Seaver LC, Imlay JA: Hydrogen peroxide fluxes and compartmentalization inside growing Escherichia coli. J Bacteriol 2001, 183:7182-7189.
  • [45]Bennett BD, Kimball EH, Gao M, Osterhout R, Van Dien SJ, Rabinowitz JD: Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol 2009, 5:593-599.
  • [46]Guengerich FP: Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol 2001, 14:611-650.
  • [47]Guengerich FP, Munro AW: Unusual cytochrome P450 enzymes and reactions. J Biol Chem 2013, 288:17065-17073.
  • [48]Fujii T, Nakamura K, Shibuya K, Tanase S, Gotoh O, Ogawa T, Fukuka H: Structural characterization of the gene and corresponding cDNA for the cytochrome P450rm from Rhodotorula minuta which catalyzes formation of isobutene and 4-hydroxylation of benzoate. Mol Gen Genet 1997, 256:115-120.
  • [49]Fasan R, Crook NC, Peters MW, Meinhold P, Buelter T, Landwehr M, Cirino PC, Arnold FH: Improved product-per-glucose yields in P450-dependent propane biotransformations using engineered Escherichia coli. Biotechnol Bioeng 2011, 108:500-510.
  • [50]Wei X-X, Chen G-Q: Applications of the VHb gene vgb for improved microbial fermentation processes. Methods Enzymol 2008, 436:273-287.
  • [51]Bai L, Li P, Zhang H, Duan Y, Lin Z: Semi-rational engineering of cytochrome P450sca-2 in a hybrid system for enhanced catalytic activity: insights into the important role of electron transfer. Biotechnol Bioeng 2013, 110:2815-2835.
  • [52]Yu X, Liu T, Zhu F, Khosla C: In vitro reconstitution and steady-state analysis of the fatty acid synthase from Escherichia coli. Proc Natl Acad Sci USA 2011, 108:18643-18648.
  • [53]Liu T, Vora H, Khosla C: Quantitative analysis and engineering of fatty acid biosynthesis in E. coli. Metab Eng 2010, 12:378-386.
  • [54]Sullivan KH, Hegeman GD, Cordes EH: Alteration of the fatty acid composition of Escherichia coli by growth in the presence of normal alcohols. J Bacteriol 1979, 138:133-138.
  • [55]Marr AG, Ingraham JL: Effect of temperature on the composition of fatty acids in Escherichia coli. J Bacteriol 1962, 84:1260-1267.
  • [56]Akhtar MK, Turner NJ, Jones PR: Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities. Proc Natl Acad Sci USA 2013, 110:87-92.
  • [57]Gogerty DS, Bobik TA: Formation of isobutene from 3-hydroxy-3-methylbutyrate by diphosphomevalonate decarboxylase. Appl Environ Microbiol 2010, 76:8004-8010.
  • [58]Heckman KL, Pease LR: Gene splicing and mutagenesis by PCR-driven overlap extension. Nat Protoc 2007, 2:924-932.
  • [59]Li S, Podust LM, Sherman DH: Engineering and analysis of a self-sufficient biosynthetic cytochrome P450 PikC fused to the RhFRED reductase domain. J Am Chem Soc 2007, 129:12940-12941.
  • [60]Li S, Chaulagain MR, Knauff AR, Podust LM, Montgomery J, Sherman DH: Selective oxidation of carbolide C–H bonds by an engineered macrolide P450 mono-oxygenase. Proc Natl Acad Sci USA 2009, 106:18463-18468.
  • [61]Anzai Y, Li S, Chaulagain MR, Kinoshita K, Kato F, Montgomery J, Sherman DH: Functional analysis of MycCI and MycG, cytochrome P450 enzymes involved in biosynthesis of mycinamicin macrolide antibiotics. Chem Biol 2008, 15:950-959.
  • [62]Omura T, Sato R: The carbon monoxide-binding pigment of liver microsomes. II. Solubilization, purification, and properties. J Biol Chem 1964, 239:2379-2385.
  • [63]Fujii K, Galivan JH, Huennekens FM: Activation of methionine synthase: further characterization of flavoprotein system. Arch Biochem Biophys 1977, 178:662-670.
  • [64]Jenkins CM, Waterman MR: NADPH-flavodoxin reductase and flavodoxin from Escherichia coli: characteristics as a soluble microsomal P450 reductase. Biochemistry 1998, 37:6106-6113.
  • [65]Guan W, Zhao H, Lu X, Wang C, Yang M, Bai F: Quantitative analysis of fatty-acid-based biofuels produced by wild-type and genetically engineered cyanobacteria by gas chromatography–mass spectrometry. J Chromatogr A 2011, 1218:8289-8293.
  • [66]Bauer S, Schulte E, Thier H-P: Composition of the surface wax from tomatoes. I. Identification of the components by GC/MS. Eur Food Res Technol 2009, 219:223-228.
  文献评价指标  
  下载次数:125次 浏览次数:56次