期刊论文详细信息
BMC Anesthesiology
Tissue ischemia microdialysis assessments following severe traumatic haemorrhagic shock: lactate/pyruvate ratio as a new resuscitation end point?
Filip Burša2  Leopold Pleva1  Jan Máca2  Peter Sklienka2  Pavel Ševčík2 
[1] Traumatology Centre, University Hospital Ostrava, Faculty of Medicine Universitas Ostrava, 17. listopadu 1790, Ostrava-Poruba, Czech Republic
[2] Department of anesthesiology and intensive care medicine, University Hospital Ostrava, Faculty of Medicine Universitas Ostrava, 17. listopadu 1790, Ostrava-Poruba, Czech Republic
关键词: Trauma;    Transfusion;    Cardiac output;    Haemoglobin;    Pyruvate;    Lactate;    Shock;    Microdialysis;   
Others  :  1084212
DOI  :  10.1186/1471-2253-14-118
 received in 2014-09-01, accepted in 2014-12-10,  发布年份 2014
【 摘 要 】

Background

Intensive care of severe trauma patients focuses on the treatment of haemorrhagic shock. Tissues should be perfused sufficiently with blood and with sufficient oxygen content to ensure adequate tissue oxygen delivery. Tissue metabolism can be monitored by microdialysis, and the lactate/pyruvate ratio (LPR) may be used as a tissue ischemia marker. The aim of this study was to determine the adequate cardiac output and haemoglobin levels that avoid tissue ischemia.

Methods

Adult patients with serious traumatic haemorrhagic shock were enrolled in this prospective observational study. The primary observed parameters included haemoglobin, cardiac output, central venous saturation, arterial lactate and the tissue lactate/pyruvate ratio.

Results

Forty-eight patients were analysed. The average age of the patients was 39.8 ± 16.7, and the average ISS was 43.4 ± 12.2. Hb < 70 g/l was associated with pathologic arterial lactate, ScvO2 and LPR. Tissue ischemia (i.e., LPR over 25) developed when CI ≤ 3.2 l/min/m2 and Hb between 70 and 90 g/l were observed. Severe tissue ischemia events were recorded when the Hb dropped below 70 g/l and CI was 3.2-4.8 l/min/m2. CI ≥ 4.8 l/min/m2 was not found to be connected with tissue ischemia, even when Hb ≤ 70 g/l.

Conclusion

LPR could be a useful marker to manage traumatic haemorrhagic shock therapies. In initial traumatic haemorrhagic shock treatments, it may be better to maintain CI ≥ 3.2 l/min/m2 and Hb ≥ 70 g/l to avoid tissue ischemia. LPR could also be a useful transfusion trigger when it may demonstrate ischemia onset due to low local DO2 and early reveal low/no tissue perfusion.

【 授权许可】

   
2014 Burša et al.; licensee BioMed Central.

附件列表
Files Size Format View
Figure 4. 73KB Image download
Figure 4. 37KB Image download
Figure 3. 76KB Image download
Figure 2. 51KB Image download
Figure 1. 60KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 4.

【 参考文献 】
  • [1]Schoeneberg C, Schilling M, Keitel J, Kauther MD, Burggraf M, Hussmann B, Lendemans S: TraumaNetwork, Trauma Registry of the DGU®, Whitebook, S3 Guideline on Treatment of Polytrauma/Severe Injuries: An Approach for Validation by a Retrospective Analysis of 2304 Patients (2002-2011) of a Level 1 Trauma Centre. Zentralbl Chir 2014. doi:10.1055/s-0033-1360225
  • [2]Rush BF: Irreversibility in post-transfusion phase of hemorrhagic shock. Adv Exp Med Bio 1971, 23:215-221.
  • [3]Shoemaker WC, Appel PL, Kram HB: Tissue oxygen debt as a determinant of lethal and nonlethal postoperative organ failure. Crit Care Med 1988, 16(11):1117-1120.
  • [4]Barbee RW, Reynolds PS, Ward KR: Assessing shock resuscitation strategies by oxygen debt repayment. Shock 2010, 33(2):113-122.
  • [5]Bonanno FG: Physiopathology of shock. J Emerg Trauma Shock 2011, 4(2):222-232.
  • [6]Dutton RP: Hemostaticresuscitation. British J Anesthesia 2012, 109(S1):i39-i46.
  • [7]Spahn DR, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernández-Mondéjar E, Filipescu D, Hunt BJ, Komadina R, Nardi G, Neugebauer E, Ozier Y, Riddez L, Schultz A, Vincent JL, Rossaint R: Management of bleeding and coagulopathy following major trauma: an updated European guideline. Crit Care 2013, 17(2):R76. BioMed Central Full Text
  • [8]Bursa F, Olos T, Pleva L, Kula R, Jahoda J, Procházka V, Kopácek I: Metabolism monitoring with microdialysis in the intensive care. Cas Lek Cesk 2011, 150(11):605-609.
  • [9]Waelgaard L, Dahl BM, Kvarstein G, Tønnessen TI: Tissue gas tension and tissue metabolites for detection of organ hypoperfusion and ischemia. Acta Anaesthesiol Scand 2012, 56(2):200-209.
  • [10]Suistomaa M, Uusaro A, Parviainen I, Ruokonen E: Resolution and outcome of acute circulatory failure does not correlate with hemodynamics. Critical Care 2003, 7:R52-R58. BioMed Central Full Text
  • [11]Khan S, Allard S, Weaver A, Barber C, Davenport R, Brohi K: A major haemorrhage protocol improves the delivery of blood component therapy and reduces waste in trauma massive transfusion. Injury 2013, 44(5):587-592.
  • [12]Hsu JM, Hitos K, Fletcher JP: Identifying the bleeding trauma patient: predictive factors for massive transfusion in an Australasian trauma population. J Trauma Acute Care Surg 2013, 75(3):359-364.
  • [13]Elmer J, Wilcox SR, Raja AS: Massive transfusion in traumatic shock. J Emerg Med 2013, 44(4):829-838.
  • [14]Tien H, Nascimento B Jr, Callum J, Rizoli S: An approach to transfusion and hemorrhage in trauma: current perspectives on restrictive transfusion strategies. Can J Surg 2007, 50(3):202-209.
  • [15]Morel N, Delaunay F, Dubuisson V: Management of bleeding following major trauma: is a targethaemoglobin of 7 to 9 g/dl high enough? Critical Care 2013, 17:442. BioMed Central Full Text
  • [16]Burša F, Pleva L: Anaerobic metabolism associated with traumatic hemorrhagic shock monitored by microdialysis of muscle tissue is dependent on the levels of hemoglobin and central venous oxygen saturation: a prospective, observational study. Scand J Trauma Resusc Emerg Med 2014, 22(1):11. BioMed Central Full Text
  • [17]Chappell D, Jacob M, Hofmann-Kiefer K, Conzen P, Rehm M: A rational approach to perioperative fluid management. Anesthesiology 2008, 109:723-740.
  • [18]Rhee P, Wang D, Ruff P, Austin B, DeBraux S, Wolcott K, Burris D, Ling G, Sun L: Human neutrophil activation and increased adhesion by various resuscitation fluids. Crit Care Med 2000, 28:74-78.
  • [19]Nohé B, Ploppa A, Schmidt V, Unertl K: Volume replacement in intensive care medicine. Anaesthesist 2011, 60(5):457-464. 466-473
  • [20]Meregalli A, Oliveira RP, Friedman G: Occulthypoperfusion is associated with increased mortality in hemodynamically stable, high-risk, surgical patients. Critical Care 2004, 8:R60-R65. BioMed Central Full Text
  • [21]Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL: Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 2004, 32(9):1825-1831.
  • [22]Brucculeri S, Urso C, Caimi G: The role of lactate besides the lactic acidosis. ClinTer 2013, 164(3):e223-e238.
  • [23]De Backer D: Lactic acidosis. Intensive Care Med 2003, 29:699-702.
  • [24]Ohashi H, Kawasaki N, Fujitani S: Utility of microdialysis to detect the lactate/pyruvate ratio in subcutaneous tissue for the reliable monitoring of haemorrhagic shock. J Smooth Muscle Res 2009, 45(6):269-278.
  • [25]Larentzakis A, Toutouzas KG, Papalois A, Lapidakis G, Doulgerakis S, Doulami G, Drimousis P, Theodorou D, Katsaragakis S: Porcine model of haemorrhagic shock with microdialysis monitoring. J Surg Res 2013, 179(1):e177-e182.
  • [26]Dimopoulou I, Nikitas N, Orfanos SE, Theodorakopoulou M, Vassiliadi D, Ilias I, Ikonomidis I, Boutati E, Maratou E, Tsangaris I, Karkouli G, Tsafou E, Diamantakis A, Kopterides P, Maniatis N, Kotanidou A, Armaganidis A, Ungerstedt U: Kinetics of adipose tissue microdialysis-derived metabolites in critically ill septic patients:associations with sepsis severity and clinical outcome. Shock 2011, 35(4):342-348.
  • [27]Suistomaa M, Ruokonen E, Kari A, Takala J: Time-pattern of lactate and lactate to pyruvate ratio in the first 24 hours of intensive care emergency admissions. Shock 2000, 14(1):8-12.
  • [28]Tánczos K, Molnár Z: The oxygen supply–demand balance: a monitoring challenge. Best Pract Res Clin Anaesthesiol 2013, 27(2):201-207.
  • [29]Della Rocca G, Pompei L: Goal-directed therapy in anesthesia: any clinical impact or just a fashion? Minerva Anestesiol 2011, 77(5):545-553.
  • [30]Caille V, Squara P: Oxygen uptake-to-delivery relationship: a way to assess adequate flow. Crit Care 2006, 10(3):S4.
  • [31]Velmahos GC, Demetriades D, Shoemaker WC, Chan LS, Tatevossian R, Wo CC, Vassiliu P, Cornwell EE 3rd, Murray JA, Roth B, Belzberg H, Asensio JA, Berne TV: Endpoints of resuscitation of critically injured patients: normal or supranormal? A prospective randomized trial. Ann Surg 2000, 232(3):409-418.
  • [32]Hayes MA, Timmings AC, Yau EH, Palazzo M, Hinds CJ, Watson D: Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med 1994, 330:1717-1722.
  • [33]Sisak K, Manolis M, Hardy BM, Enninghorst N, Bendinelli C, Balogh ZJ: Acute transfusion practice during trauma resuscitation: who, when, where and why? Injury 2013, 44(5):581-586.
  文献评价指标  
  下载次数:28次 浏览次数:18次