期刊论文详细信息
BMC Biotechnology
A sugar beet chlorophyll a/b binding protein promoter void of G-box like elements confers strong and leaf specific reporter gene expression in transgenic sugar beet
Reinhard Hehl3  Dorothee U Kloos2  Dietmar J Stahl1 
[1]PLANTA Angewandte Pflanzengenetik und Biotechnologie GmbH, Grimsehlstr. 31, D-37555 Einbeck, Germany
[2]Genedata GmbH, Lena-Christ Strasse 50, D-82152 Martinsried, Germany
[3]Institut für Genetik – Biozentrum, Technische Universität Braunschweig, Spielmannstr. 7, D-38106 Braunschweig, Germany
Others  :  1154457
DOI  :  10.1186/1472-6750-4-31
 received in 2004-07-13, accepted in 2004-12-05,  发布年份 2004
PDF
【 摘 要 】

Background

Modification of leaf traits in sugar beet requires a strong leaf specific promoter. With such a promoter, expression in taproots can be avoided which may otherwise take away available energy resources for sugar accumulation.

Results

Suppression Subtractive Hybridization (SSH) was utilized to generate an enriched and equalized cDNA library for leaf expressed genes from sugar beet. Fourteen cDNA fragments corresponding to thirteen different genes were isolated. Northern blot analysis indicates the desired tissue specificity of these genes. The promoters for two chlorophyll a/b binding protein genes (Bvcab11 and Bvcab12) were isolated, linked to reporter genes, and transformed into sugar beet using promoter reporter gene fusions. Transient and transgenic analysis indicate that both promoters direct leaf specific gene expression. A bioinformatic analysis revealed that the Bvcab11 promoter is void of G-box like regulatory elements with a palindromic ACGT core sequence. The data indicate that the presence of a G-box element is not a prerequisite for leaf specific and light induced gene expression in sugar beet.

Conclusions

This work shows that SSH can be successfully employed for the identification and subsequent isolation of tissue specific sugar beet promoters. These promoters are shown to drive strong leaf specific gene expression in transgenic sugar beet. The application of these promoters for expressing resistance improving genes against foliar diseases is discussed.

【 授权许可】

   
2004 Stahl et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150407104537899.pdf 775KB PDF download
Figure 5. 21KB Image download
Figure 4. 99KB Image download
Figure 3. 82KB Image download
Figure 2. 79KB Image download
Figure 1. 73KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Elliott MC, Weston GD: Biology and physiology of the sugar-beet plant. In The sugar beet crop: science into practice. Edited by Cooke DA, Scott RK. London: Chapman and Hall; 1993:37-66.
  • [2]Graham MW, Craig S, Waterhouse PM: Expression patterns of vascular-specific promoters RolC and Sh in transgenic potatoes and their use in engineering PLRV-resistant plants. Plant Mol Biol 1997, 33:729-735.
  • [3]Zhang J, Van Toai T, Huynh L, Preiszner J: Development of flooding-tolerant Arabidopsis thaliana by autoregulated cytokinin production. Mol Breed 2000, 6:135-144.
  • [4]Outchkourov NS, Peters J, De Jong J, Rademakers W, Jongsma MA: The promoter-terminator of chrysanthemum rbcS1 directs very high expression levels in plants. Planta 2003, 216:1003-1012.
  • [5]Jaeger GD, Scheffer S, Jacobs A, Zambre M, Zobell O, Goossens A, Depicker A, Angenon G: Boosting heterologous protein production in transgenic dicotyledonous seeds using Phaseolus vulgaris regulatory sequences. Nat Biotechnol 2002, 20:1265-1268.
  • [6]Herwig R, Schulz B, Weisshaar B, Hennig S, Steinfath M, Drungowski M, Stahl D, Wruck W, Menze A, O'Brien J, Lehrach H, Radelof U: Construction of a 'unigene' cDNA clone set by oligonucleotide fingerprinting allows access to 25 000 potential sugar beet genes. Plant J 2002, 32:845-857.
  • [7]Diatchenko L, Lukyanov S, Lau YF, Siebert PD: Suppression subtractive hybridization: a versatile method for identifying differentially expressed genes. Methods Enzymol 1999, 303:349-380.
  • [8]Kloos DU, Oltmanns H, Dock C, Stahl D, Hehl R: Isolation and molecular analysis of six taproot expressed genes from sugar beet. J Exp Bot 2002, 53:1533-1534.
  • [9]Schwartz E, Shen D, Aebersold R, McGrath JM, Pichersky E, Green BR: Nucleotide sequence and chromosomal location of Cab11 and Cab12, the genes for the fourth polypeptide of the photosystem I light-harvesting antenna (LHCI). FEBS Lett 1991, 280:229-234.
  • [10]Hehl R, Wingender E: Database-assisted promoter analysis. Trends Plant Sci 2001, 6:251-255.
  • [11]Matys V, Fricke E, Geffers R, Gossling E, Haubrock M, Hehl R, Hornischer K, Karas D, Kel A E, Kel-Margoulis OV, Kloos DU, Land S, Lewicki-Potapov B, Michael H, Münch R, Reuter I, Rotert S, Saxel H, Scheer M, Thiele S, Wingender E: TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res 2003, 31:374-378.
  • [12]Onodera Y, Suzuki A, Wu CY, Washida H, Takaiwa F: A rice functional transcriptional activator, RISBZ1, responsible for endosperm-specific expression of storage protein genes through GCN4 motif. J Biol Chem 2001, 276:14139-14152.
  • [13]de Pater S, Katagiri F, Kijne J, Chua NH: bZIP proteins bind to a palindromic sequence without an ACGT core located in a seed-specific element of the pea lectin promoter. Plant J 1994, 6:133-140.
  • [14]Chen W, Chao G, Singh KB: The promoter of a H2O2-inducible, Arabidopsis glutathione S-transferase gene contains closely linked OBF- and OBP1-binding sites. Plant J 1996, 10:955-966.
  • [15]Hobo T, Asada M, Kowyama Y, Hattori T: ACGT-containing abscisic acid response element (ABRE) and coupling element 3 (CE3) are functionally equivalent. Plant J 1999, 19:679-689.
  • [16]Hobo T, Kowyama Y, Hattori T: A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. Proc Natl Acad Sci U S A 1999, 96:15348-15353.
  • [17]Nakagawa H, Ohmiya K, Hattori T: A rice bZIP protein, designated OSBZ8, is rapidly induced by abscisic acid. Plant J 1996, 9:217-227.
  • [18]Katagiri F, Lam E, Chua NH: Two tobacco DNA-binding proteins with homology to the nuclear factor CREB. Nature 1989, 340:727-730.
  • [19]Niggeweg R, Thurow C, Kegler C, Gatz C: Tobacco transcription factor TGA2.2 is the main component of as-1-binding factor ASF-1 and is involved in salicylic acid- and auxin-inducible expression of as-1-containing target promoters. J Biol Chem 2000, 275:19897-19905.
  • [20]Mikami K, Sakamoto A, Takase H, Tabata T, Iwabuchi M: Wheat nuclear protein HBP-1 binds to the hexameric sequence in the promoter of various plant genes. Nucleic Acids Res 1989, 17:9707-9717.
  • [21]Green BR, Pichersky E, Kloppstech K: Chlorophyll a/b-binding proteins: an extended family. Trends Biochem Sci 1991, 16:181-186.
  • [22]Knoetzel J, Svendsen I, Simpson DJ: Identification of the photosystem I antenna polypeptides in barley. Isolation of three pigment-binding antenna complexes. Eur J Biochem 1992, 206:209-215.
  • [23]Schmid VH, Cammarata KV, Bruns BU, Schmidt GW: In vitro reconstitution of the photosystem I light-harvesting complex LHCI-730: Heterodimerization is required for antenna pigment organization. Proc Natl Acad Sci U S A 1997, 94:7667-7672.
  • [24]Gotor C, Romero LC, Inouye K, Lam E: Analysis of three tissue-specific elements from the wheat Cab-1 enhancer. Plant J 1993, 3:509-518.
  • [25]Lübberstedt T, Bolle CEH, Sopory S, Flieger K, Herrmann RG, Oelmüller R: Promoters from genes for plastid proteins possess regions with different sensitivities toward red and blue light. Plant Physiol 1994, 104:997-1006.
  • [26]Luan S, Bogorad L: A rice cab gene promoter contains separate cis-acting elements that regulate expression in dicot and monocot plants. Plant Cell 1992, 4:971-981.
  • [27]Duffus JE, Ruppel EG: Diseases. In The sugar beet crop: science into practice. Edited by Cooke DA, Scott RK. London: Chapman and Hall; 1993:347-427.
  • [28]Benfey PN, Ren L, Chua NH: The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue-specific expression patterns. EMBO J 1989, 8:2195-2202.
  • [29]Sanger M, Daubert S, Goodman RM: Characteristics of a strong promoter from figwort mosaic virus: comparison with the analogous 35S promoter from cauliflower mosaic virus and the regulated mannopine synthase promoter. Plant Mol Biol 1990, 14:433-443.
  • [30]Gatz C: Chemical control of gene expression. Annu Rev Plant Physiol Plant Mol Biol 1997, 48:89-108.
  • [31]Logemann J, Schell J, Willmitzer L: Improved method for the isolation of RNA from plant tissue. Anal Biochem 1987, 163:16-20.
  • [32]Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K: Current protocols in molecular biology. New York, Greene and Wiley Interscience; 1988.
  • [33]Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW: Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci U S A 1984, 81:8014-8018.
  • [34]Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
  • [35]Marck C: 'DNA Strider': a 'C' program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers. Nucleic Acids Res 1988, 16:1829-1836.
  • [36]Church GM, Gilbert W: Genomic sequencing. Proc Natl Acad Sci U S A 1984, 81:1991-1995.
  • [37]Sanford JC: The biolistic process. Trends Biotechnol 1988, 6:299-302.
  • [38]Schmidt K: Identifizierung eines Cercospora beticola responsiven Bereichs innerhalb des Kernpromotors des pal-Gens der Zuckerrübe sowie eines daran bindenden, neuen Transkriptionsfaktors. Dissertation, Technische Universität Braunschweig, Germany; 2003.
  • [39]An G: Binary Ti vectors for plant transformation and promoter analysis. Methods Enzymol 1987, 153:292-305.
  • [40]Lindsey K, Gallois P, Eady C: Regeneration and transformation of sugar beet by Agrobacterium tumefaciens. In Plant Tissue Culture Manual B7. Kluwer Academic Publishers; 1991:1-13.
  • [41]Jefferson RA, Kavanagh TA, Bevan MW: GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 1987, 6:3901-3907.
  • [42]Kopriva S, Bauwe H: Cloning and sequencing of two isoforms of serine hydroxymethyltransferase from Flaveria pringlei (accession nos. Z25859 and Z25860). Plant Physiol 1998, 116:1603.
  • [43]Steppuhn J, Hermans J, Nechushtai R, Herrmann GS, Herrmann RG: Nucleotide sequences of cDNA clones encoding the entire precursor polypeptide for subunit VI and of the plastome-encoded gene for subunit VII of the photosystem I reaction center from spinach. Curr Genet 1989, 16:99-108.
  • [44]Pelzer-Reith B, Penger A, Schnarrenberger C: Plant aldolase: cDNA and deduced amino-acid sequences of the chloroplast and cytosol enzyme from spinach. Plant Mol Biol 1993, 21:331-340.
  • [45]Schneider K, Borchardt DC, Schäfer-Pregl R, Nagl N, Glass C, Jeppsson A, Gebhardt C, Salamini F: PCR-based cloning and segregation analysis of functional gene homologues in Beta vulgaris. Mol Gen Genet 1999, 262:515-524.
  • [46]Falkenstein E, von Schaewen A, Scheibe R: Full-length cDNA sequences for both ferredoxin-thioredoxin reductase subunits from spinach (Spinacia oleracea L.). Biochim Biophys Acta 1994, 1185:252-254.
  • [47]Werneke JM, Zielinski RE, Ogren WL: Structure and expression of spinach leaf cDNA encoding ribulosebisphosphate carboxylase/oxygenase activase. Proc Natl Acad Sci U S A 1988, 85:787-791.
  • [48]Flieger K, Oelmüller R, Herrmann RG: Isolation and characterization of cDNA clones encoding a 18.8 kDa polypeptide, the product of the gene psaL, associated with photosystem I reaction center from spinach. Plant Mol Biol 1993, 22:703-709.
  文献评价指标  
  下载次数:40次 浏览次数:17次