期刊论文详细信息
BMC Biotechnology
Bactericidal activities of GM flax seedcake extract on pathogenic bacteria clinical strains
Magdalena Zuk3  Agata Dorotkiewicz-Jach2  Zuzanna Drulis-Kawa2  Malgorzata Arendt1  Anna Kulma1  Jan Szopa3 
[1] Faculty of Biotechnology, Wrocław University, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
[2] Institute of Genetics and Microbiology, Wroclaw University, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
[3] Linum Fundation, Stabłowicka 147/149, 54-066 Wrocław, Poland
关键词: Flax seedcake;    Alternative antibiotic;    Flax;    Phenolic acid;    Antimicrobial compound;   
Others  :  1084875
DOI  :  10.1186/1472-6750-14-70
 received in 2014-02-14, accepted in 2014-07-14,  发布年份 2014
PDF
【 摘 要 】

Background

The antibiotic resistance of pathogenic microorganisms is a worldwide problem. Each year several million people across the world acquire infections with bacteria that are antibiotic-resistant, which is costly in terms of human health. New antibiotics are extremely needed to overcome the current resistance problem.

Results

Transgenic flax plants overproducing compounds from phenylpropanoid pathway accumulate phenolic derivatives of potential antioxidative, and thus, antimicrobial activity. Alkali hydrolyzed seedcake extract containing coumaric acid, ferulic acid, caffeic acid, and lignan in high quantities was used as an assayed against pathogenic bacteria (commonly used model organisms and clinical strains). It was shown that the extract components had antibacterial activity, which might be useful as a prophylactic against bacterial infection. Bacteria topoisomerase II (gyrase) inhibition and genomic DNA disintegration are suggested to be the main reason for rendering antibacterial action.

Conclusions

The data obtained strongly suggest that the seedcake extract preparation is a suitable candidate for antimicrobial action with a broad spectrum and partial selectivity. Such preparation can be applied in cases where there is a risk of multibacterial infection and excellent answer on global increase in multidrug resistance in pathogenic bacteria.

【 授权许可】

   
2014 Zuk et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113165026786.pdf 922KB PDF download
Figure 5. 33KB Image download
Figure 4. 21KB Image download
Figure 3. 85KB Image download
Figure 2. 64KB Image download
Figure 1. 33KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Herati RS, Blumberg EE: Losing ground: multidrug-resistant bacteria in solid-organ transplantation. Curr Opin Infect Dis 2012, 25(4):445-449.
  • [2]Livermore DM: Fourteen years in resistance. Int J Antimicrob Agents 2012, 39(4):283-294.
  • [3]Pitout JD: Infections with extended-spectrum beta-lactamase-producing enterobacteriaceae: changing epidemiology and drug treatment choices. Drugs 2010, 3:313-333.
  • [4]Rossolini GM, Mantengoli E: Antimicrobial resistance in Europe and its potential impact on empirical therapy. Clin Microbiol Infect 2008, 14(Suppl 6):2-8.
  • [5]Johnson AP: Antibiotic resistance among clinically important Gram-positive bacteria in the UK. J Hosp Infect 1998, 40:17-26.
  • [6]EARSS: European Antibiotic Resistance Surveillance System. Available: http://www.who.int/world-health-day/2011/en/index.html webcite, Accessed 15 October, 2012
  • [7]WHO: Antimicrobial Resistance:no Action Today, no Cure Tomorrow. 2011. Available: http://www.who.int/world-health-day/2011/en/index.html webcite, Accessed 15 October, 2012
  • [8]Robles M, Toscano E, Cotta J, Lucena MI, Andrade RJ: Antibiotic-induced liver toxicity: mechanisms, clinical features and causality assessment. Curr Drug Saf 2010, 5(3):212-222.
  • [9]Prasad K: Secoizolariciresinol diglucoside from flaxseed delays the development of type 2 diabetes in Zucker rat. J Lab Clin Med 2001, 138(1):32-39.
  • [10]Christofidou-Solomidou M, Tyagi S, Tan KS, Hagan S, Pietrofesa R, Dukes F, Arguiri E, Heitjan DF, Solomides CC, Cengel KA: Dietary flaxseed administered post thoracic radiation treatment improves survival and mitigates radiation-induced pneumonopathy in mice. BMC Cancer 2011, 11:269. BioMed Central Full Text
  • [11]Miśta D, Kroliczewska B, Zawadzki W, Pecka E, Steininger M, Hull S, Zuk M, Szopa J: The effect of Linola and W92/72 transgenic flax seeds on the rabbit caecal fermentation–in vitro study. Pol J Vet Sci 2011, 14(4):557-564.
  • [12]Lorenc-Kukuła K, Wrobel-Kwiatkowska M, Starzycki M, Szopa J: Engineering flax with increased flavonoid content and thus Fusarium resistance. PMPP 2007, 70(1–3):38-48.
  • [13]Zuk M, Kulma A, Dymińska L, Szołtysek K, Prescha A, Hanuza J, Szopa J: Flavonoid engineering of flax potentiate its biotechnological application. BMC Biotechnol 2011, 11(10):resc.
  • [14]Wróbel-Kwiatkowska M, Lorenc-Kukula K, Starzycki M, Oszmiański J, Kępczyńska E, Szopa J: Expression of -1,3-glucanase in flax causes increased resistance to fungi. Physiol Mol Plant Pathol 2005, 65:245-256.
  • [15]Wróbel-Kwiatkowska M, Zuk M, Szopa J, Dymińska L, Mączka M, Hanuza J: Poly-3-hydroxy butyric acid interaction with the transgenic flax fibers: FT-IR and Raman spectra of the composite extracted from a GM flax. Spectrochim Acta A Mol Biomol Spectrosc 2009, 73:286-294.
  • [16]Blainski ALG, de Mello JC P: Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium Brasiliense L. Molecules 2013, 18:6852-6865.
  • [17]Lee JRC, Wrolstad R: Correlation of two anthocyanin quantification methods:HPLC and spectrophotometric methods. Food Chem 2008, 110:782-786.
  • [18]Porter LJ, Hrstich LN, Chan BG: The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochem 1986, 25:223-230.
  • [19]Lorenc-Kukuła K, Zuk M, Kulma A, Czemplik M, Kostyn K, Skala J, Starzycki M, Szopa J: Enginiering flax with the GT Family I Solanum sogerandinum gycosyltransferase SsGT1 Confers Increased Resistance to Fusarium Infection. J Agric Food Chem 2009, 57(15):6698-6705.
  • [20]Lukaszewicz M, Matysiak-Kata I, Aksamit A, Oszmianski J, Szopa J: 14-3-3 Protein regulation of the antioxidant capacity of transgenic potato tubers. PlantSci 2002, 163:125-130.
  • [21]EUCAST DISCUSSION DOCUMENT E.Dis 5.1: Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin Microbiol Infect 2003, 9(8):1-7.
  • [22]Lorenc- Kukuła K, Amarowicz R, Oszmiański J, Doermann P, Starzyki M, Skała J, Zuk M, Kulma A, Szopa J: Pleiotropic effect of phenolic compounds content increases in transgenic flax plant. J Agric Food Chem 2005, 53:3685-3692.
  • [23]Cowan M: Plant products as antimicrobial agents. Clin Microbiol Rev 1999, 12(4):564-582.
  • [24]Zuk M, Dyminska L, Kulma A, Boba A, Prescha A, Szopa J, Mączka MZA, Szołtysek K, Hanuza J: IR and Raman studies of oil and seedcake extracts from natural and genetically modified flax seeds. Spectrochim Acta A Mol Biomol Spectrosc 2011, 78(3):1080-1089.
  • [25]Cushni T, Lamb A: Antimicrobial activity of flavonoids. Int J Antimicrob Agents 2005, 26:343-356.
  • [26]Lacombe A, Wu VC, Tyler S, Edwards K: Antimicrobial action of the American cranberry constituents; phenolics, anthocyanins, and organic acids, against Escherichia coli O157:H7. Int J Food Microbiol 2010, 139(1-2):102-107.
  • [27]Campos FM, Couto JA, Figueiredo AR, Toth LV, Rangel AO, Hogg TA: Cell membrane damage induced by phenolic acids on wine lactic acid bacteria. Int J Food Microbiol 2009, 135(2):144-151.
  • [28]Sa’nchez-Maldonado AF, Schieber A, Ganzle MG: Structure–function relationships of the antibacterial activity of phenolic acids and their metabolism by lactic acid bacteria. J Appl Microbiol 2011, 111(5):1176-1184.
  • [29]Heddle JG, Zamble DB, Holfelder F, Miller DA, Wenzell LM, Walsh C, Maxwell A: The antibiotic microcin B17 is a DNA gyrase poison: characterisation of the mode of inhibition. J Mol Biol 2001, 307(5):1223-1234.
  • [30]Mustaev A, Malik M, Zhao X, Kurepina N, Luan G, Oppegard LM, Hiasa H, Marks KR, Kerns RJ, Berger JM, Drlica K: Fluoroquinolone-Gyrase-DNA Complexes: two modes of drug binding. J Biol Chem 2014, 289(18):12300-12312.
  • [31]Kosalec I, Pepeljnjak S, Bakmaz M, Vladimir-Knezevic S: Flavonoid analysis and antimicrobial activity of commercially available propolis products. Acta Pharm 2005, 55:423-430.
  • [32]Liao F, Wang L, Yang L-B, Zhang L, Peng X, Sun MX: Antisense oligodeoxynucleotide inhibition as an alternative and convenient method for gene function analysis in pollen tubes. PLoS One 2013, 8(3):e59112.
  • [33]Borchers AT, Keen CL, Gerstiwin ME: Mushrooms, tumors, and immunity: an update. Exp Biol Med 2004, 229:393-406.
  文献评价指标  
  下载次数:49次 浏览次数:8次