期刊论文详细信息
Biology of Sex Differences
Sex differences in microRNA regulation of gene expression: no smoke, just miRs
Tracy L Bale1  Christopher P Morgan1 
[1]Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Ste. 201E, Philadelphia, PA, 19104-6046, USA
关键词: Post-transcriptional regulation;    Sexual differentiation;    Sex-bias;    Sex difference;    MicroRNA;   
Others  :  793435
DOI  :  10.1186/2042-6410-3-22
 received in 2012-07-20, accepted in 2012-09-22,  发布年份 2012
PDF
【 摘 要 】

Males and females differ widely in morphology, physiology, and behavior leading to disparities in many health outcomes, including sex biases in the prevalence of many neurodevelopmental disorders. However, with the exception of a relatively small number of genes on the Y chromosome, males and females share a common genome. Therefore, sexual differentiation must in large part be a product of the sex biased expression of this shared genetic substrate. microRNAs (miRs) are small non-coding RNAs involved in the post-transcriptional regulation of up to 70% of protein-coding genes. The ability of miRs to regulate such a vast amount of the genome with a high degree of specificity makes them perfectly poised to play a critical role in programming of the sexually dimorphic brain. This review describes those characteristics of miRs that make them particularly amenable to this task, and examines the influences of both the sex chromosome complement as well as gonadal hormones on their regulation. Exploring miRs in the context of sex differences in disease, particularly in sex-biased neurodevelopmental disorders, may provide novel insight into the pathophysiology and potential therapeutic targets in disease treatment and prevention.

【 授权许可】

   
2012 Morgan and Bale; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705051619291.pdf 627KB PDF download
Figure 2. 35KB Image download
Figure 1. 97KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Yeh S-H, Chen P-J: Gender Disparity of Hepatocellular Carcinoma: The Roles of Sex Hormones. Oncology 2010, 78:172-179.
  • [2]Ober C, Loisel DA, Gilad Y: Sex-specific genetic architecture of human disease. Nature reviews. Genetics 2008, 9:911-922.
  • [3]Voskuhl R: Sex differences in autoimmune diseases. Biol Sex Differ 2011, 2:1. BioMed Central Full Text
  • [4]Mendell JT, Olson EN: MicroRNAs in Stress Signaling and Human Disease. Cell 2012, 148:1172-1187.
  • [5]Chang T-C, Mendell JT: microRNAs in vertebrate physiology and human disease. Annu Rev Genomics Hum Genet 2007, 8:215-239.
  • [6]Rottiers V, Näär AM: MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol 2012, 13:239-250.
  • [7]Dai R, Ahmed SA: MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases. Transl Res 2011, 157:163-179.
  • [8]Siegel C, Li J, Liu F, Benashski SE, McCullough LD: miR-23a regulation of X-linked inhibitor of apoptosis (XIAP) contributes to sex differences in the response to cerebral ischemia. Proc Natl Acad Sci 2011, 108:11662-11667.
  • [9]Langevin SM, Stone RA, Bunker CH, Grandis JR, Sobol RW, Taioli E: MicroRNA-137 promoter methylation in oral rinses from patients with squamous cell carcinoma of the head and neck is associated with gender and body mass index. Carcinogenesis 2010, 31:864-870.
  • [10]Koturbash I, Zemp F, Kolb B, Kovalchuk O: Sex-specific radiation-induced microRNAome responses in the hippocampus, cerebellum and frontal cortex in a mouse model. Mutat Res Genet Toxicol Environ Mutagen 2011, 722:114-118.
  • [11]Morgan CP, Bale TL: Early prenatal stress epigenetically programs dysmasculinization in second-generation offspring via the paternal lineage. J Neurosci 2011, 31:11748-11755.
  • [12]Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116:281-297.
  • [13]Krol J, Loedige I, Filipowicz W: The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 2010, 11:597-610.
  • [14]Cai X, Hagedorn CH, Cullen BR: Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 2004, 10:1957-1966.
  • [15]Ruby JG, Jan CH, Bartel DP: Intronic microRNA precursors that bypass Drosha processing. Nature 2007, 448:83-86.
  • [16]Höck J, Meister G: The Argonaute protein family. Genome Biol 2008, 9:210. BioMed Central Full Text
  • [17]Wang D, Zhang Z, O'Loughlin E, Lee T, Houel S, O'Carroll D, Tarakhovsky A, Ahn NG, Yi R: Quantitative functions of Argonaute proteins in mammalian development. Genes Dev 2012, 26:693-704.
  • [18]Filipowicz W, Bhattacharyya SN, Sonenberg N: Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature reviews. Genetics 2008, 9:102-114.
  • [19]Guo H, Ingolia NT, Weissman JS, Bartel DP: Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010, 466:835-840.
  • [20]Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell 2009, 136:215-233.
  • [21]Hah N, Danko CG, Core L, Waterfall JJ, Siepel A, Lis JT, Kraus WL: A Rapid, Extensive, and Transient Transcriptional Response to Estrogen Signaling in Breast Cancer Cells. Cell 2011, 145:622-634.
  • [22]Friedman RC, Farh KK-H: Burge CB. Most mammalian mRNAs are conserved targets of microRNAs, Bartel DP; 2009.
  • [23]Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP: The impact of microRNAs on protein output. Nature 2008, 455:64-71.
  • [24]Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N: Widespread changes in protein synthesis induced by microRNAs. Nature 2008, 455:58-63.
  • [25]Hendrickson DG, Hogan DJ, McCullough HL, Myers JW, Herschlag D, Ferrell JE, Brown PO: Concordant Regulation of Translation and mRNA Abundance for Hundreds of Targets of a Human microRNA. PLoS Biol. 2009, 7:e1000238.
  • [26]Bartel DP, Chen C-Z: Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 2004, 5:396-400.
  • [27]Darwin C: The descent of man. John Murray 1871, 2:1-513.
  • [28]Rice WR: Sexually antagonistic genes: experimental evidence. Science 1992, 256:1436-1439.
  • [29]Rice WR: Sex chromosomes and the evolution of sexual dimorphism. Evolution 1984, 38:735-742.
  • [30]Ellegren H, Parsch J: The evolution of sex-biased genes and sex-biased gene expression. Nat Rev Genet 2007, 8:689-698.
  • [31]McCarthy MM, Wright CL, Schwarz JM: New tricks by an old dogma: Mechanisms of the Organizational / Activational Hypothesis of steroid-mediated sexual differentiation of brain and behavior. Horm Behav 2009, 55:655-665.
  • [32]Carruth LL, Reisert I, Arnold AP: Sex chromosome genes directly affect brain sexual differentiation. Nat Neurosci 2002, 5:933-934.
  • [33]Pheonix CH, Goy RW, Gerall AA, Young WC: Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology 1959, 65:369-382.
  • [34]Arnold A, Lusis A: Understanding the Sexome: Measuring and Reporting Sex Differences in Gene Systems. Endocrinology 2012, 153:1-5.
  • [35]Klinge CM: miRNAs and estrogen action. Trends in Endocrinology and Metabolism 2012, 23:223-233.
  • [36]Lam EWF, Shah K, Brosens JJ: The diversity of sex steroid action: the role of micro-RNAs and FOXO transcription factors in cycling endometrium and cancer. J Endocrinol 2011, 212:13-25.
  • [37]O'Day E, Lal A: MicroRNAs and their target gene networks in breast cancer. Breast Cancer Res 2010, 12:201. BioMed Central Full Text
  • [38]Pan Q, Luo X, Chegini N: Differential expression of microRNAs in myometrium and leiomyomas and regulation by ovarian steroids. J Cell Mol Med 2008, 12:227-240.
  • [39]Waltering KK, Porkka KP, Jalava SE, Urbanucci A, Kohonen PJ, Latonen LM, Kallioniemi OP, Jenster G, Visakorpi T: Androgen regulation of micro-RNAs in prostate cancer. Prostate 2011, 71:604-614.
  • [40]Kuokkanen S, Chen B, Ojalvo L, Benard L, Santoro N, Pollard JW: Genomic Profiling of MicroRNAs and Messenger RNAs Reveals Hormonal Regulation in MicroRNA Expression in Human Endometrium. Biol Reprod 2010, 82:791-801.
  • [41]Paris O, Ferraro L, Grober OMV, Ravo M, De Filippo MR, Giurato G, Nassa G, Tarallo R, Cantarella C, Rizzo F, Di Benedetto A, Mottolese M, Benes V, Ambrosino C, Nola E, Weisz A: Direct regulation of microRNA biogenesis and expression by estrogen receptor beta in hormone-responsive breast cancer. Oncogene 2012, 2:1-11.
  • [42]Bhat-Nakshatri P, Wang G, Collins NR, Thomson MJ, Geistlinger TR, Carroll JS, Brown M, Hammond S, Srour EF, Liu Y, Nakshatri H: Estradiol-regulated microRNAs control estradiol response in breast cancer cells. Nucleic Acids Res 2009, 37:4850-4861.
  • [43]Kato S, Yokoyama A, Fujiki R: Nuclear receptor coregulators merge transcriptional coregulation with epigenetic regulation. Trends in Biochemical Sciences 2011, 36:272-281.
  • [44]Kininis M, Kraus WL: A global view of transcriptional regulation by nuclear receptors: gene expression, factor localization, and DNA sequence analysis. Nucl Recept Signal 2008, 6:e005.
  • [45]Castellano L, Giamas G, Jacob J, Coombes RC, Lucchesi W, Thiruchelvam P, Barton G, Jiao LR, Wait R, Waxman J, Hannon GJ, Stebbing J: The estrogen receptor-alpha-induced microRNA signature regulates itself and its transcriptional response. Proc Natl Acad Sci 2009, 106:15732-15737.
  • [46]Newman MA, Hammond SM: Emerging paradigms of regulated microRNA processing. Genes Dev 2010, 24:1086-1092.
  • [47]Pawlicki JM, Steitz JA: Nuclear networking fashions pre-messenger RNA and primary microRNA transcripts for function. Trends Cell Biol 2010, 20:52-61.
  • [48]Siomi H, Siomi MC: Posttranscriptional Regulation of MicroRNA Biogenesis in Animals. Molecular Cell 2010, 38:323-332.
  • [49]Viswanathan SR, Daley GQ, Gregory RI: Selective Blockade of MicroRNA Processing by Lin28. Science 2008, 320:97-100.
  • [50]Michlewski G, Guil S, Semple CA, Cáceres JF: Posttranscriptional Regulation of miRNAs Harboring Conserved Terminal Loops. Molecular Cell 2008, 32:383-393.
  • [51]Gregory RI, Yan K-P, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R: The Microprocessor complex mediates the genesis of microRNAs. Nat Cell Biol 2004, 432:235-240.
  • [52]Yamagata K, Fujiyama S, Ito S, Ueda T, Murata T, Naitou M, Takeyama K-I, Minami Y, Malley BWO, Kato S: Maturation of MicroRNA Is Hormonally Regulated by a Nuclear Receptor. Molecular Cell 2009, 36:340-347.
  • [53]Macias S, Michlewski G, Cáceres JF: Hormonal Regulation of MicroRNA Biogenesis. Molecular Cell 2009, 36:172-173.
  • [54]Adams BD, Claffey KP, White BA: Argonaute-2 expression is regulated by epidermal growth factor receptor and mitogen-activated protein kinase signaling and correlates with a transformed phenotype in breast cancer cells. Endocrinology 2009, 150:14-23.
  • [55]Kozomara A, Griffiths-Jones S: miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 2010, 39:D152-D157.
  • [56]Guo X, Su B, Zhou Z, Sha J: Rapid evolution of mammalian X-linked testis microRNAs. BMC Genomics 2009, 10:97. BioMed Central Full Text
  • [57]Zechner U, Wilda M, Kehrer-Sawatzki H, Vogel W, Fundele R, Hameister H: A high density of X-linked genes for general cognitive ability: a run-away process shaping human evolution? Trends Genet 2001, 17:697-701.
  • [58]Khil PP, Smirnova NA, Romanienko PJ, Camerini-Otero RD: The mouse X chromosome is enriched for sex-biased genes not subject to selection by meiotic sex chromosome inactivation. Nat Genet 2004, 36:642-646.
  • [59]Mank JE: Sex Chromosomes and the Evolution of Sexual Dimorphism: Lessons from the Genome. Am Nat 2009, 173:141-150.
  • [60]Straub T, Becker PB: Dosage compensation: the beginning and end of generalization. Nat Rev Genet 2007, 8:47-57.
  • [61]Carrel L, Willard HF: X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 2005, 434:400-404.
  • [62]Song R, Ro S, Michaels JD, Park C, McCarrey JR, Yan W: Many X-linked microRNAs escape meiotic sex chromosome inactivation. Nat Genet 2009, 41:488-493.
  • [63]Gunaratne PH, Lin Y-C, Benham AL, Drnevich J, Coarfa C, Tennakoon JB, Creighton CJ, Kim JH, Milosavljevic A, Watson M, Griffiths-Jones S, Clayton DF: Song exposure regulates known and novel microRNAs in the zebra finch auditory forebrain. BMC Genomics 2011, 12:277. BioMed Central Full Text
  • [64]Itoh Y, Replogle K, Kim YH, Wade J, Clayton DF, Arnold AP: Sex bias and dosage compensation in the zebra finch versus chicken genomes: General and specialized patterns among birds. Genome Res 2010, 20:512-518.
  • [65]McCarthy MM, Arnold AP: Reframing sexual differentiation of the brain. Nature Publishing Group 2011, 14:677-683.
  • [66]Simerly RB, Swanson LW, Handa RJ, Gorski RA: Influence of perinatal androgen on the sexually dimorphic distribution of tyrosine hydroxylase-immunoreactive cells and fibers in the anteroventral periventricular nucleus of the rat. Neuroendocrinology 1985, 40:501-510.
  • [67]Waters EM, Simerly RB: Estrogen induces caspase-dependent cell death during hypothalamic development. J Neurosci 2009, 29:9714-9718.
  • [68]Jovanovic M, Hengartner MO: miRNAs and apoptosis: RNAs to die for. Oncogene 2006, 25:6176-6187.
  • [69]Chakrabarty A, Tranguch S, Daikoku T, Jensen K, Furneaux H, Dey SK: MicroRNA regulation of cyclooxygenase-2 during embryo implantation. Proc Natl Acad Sci U S A 2007, 104:15144-15149.
  • [70]Amateau SK, McCarthy MM: A novel mechanism of dendritic spine plasticity involving estradiol induction of prostaglandin-E2. J Neurosci 2002, 22:8586-8596.
  • [71]Pruitt KD, Tatusova T, Klimke W, Maglott DR: NCBI Reference Sequences: current status, policy and new initiatives. Nucleic Acids Res 2009, 37:D32-D36.
  • [72]Yang X: Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res 2006, 16:995-1004.
  • [73]Han J, Lee Y, Yeom K-H, Kim Y-K, Jin H, Kim VN: The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 2004, 18:3016-3027.
  • [74]Czech B, Hannon GJ: Small RNA sorting: matchmaking for Argonautes. Nat Rev Genet 2011, 12:19-31.
  文献评价指标  
  下载次数:11次 浏览次数:12次