期刊论文详细信息
BioMedical Engineering OnLine
On the viability of implantable electrodes for the natural control of artificial limbs: Review and discussion
Max Ortiz-Catalan1  Rickard Brånemark1  Bo Håkansson3  Jean Delbeke2 
[1] Centre of Orthopaedic Osseointegration, Department of Orthopaedics, Sahlgrenska University Hospital, Göteborg, Sweden
[2] School of Medicine (MD), Institute of Neuroscience (SSS/IoNS/COSY), Université catholique de Louvain, Brussels, Belgium
[3] Department of Signals and Systems, Biomedical Engineering Division, Chalmers University of Technology, Göteborg, Sweden
关键词: Prosthetic control;    Artificial limbs;    Neural interfaces;    Implantable electrodes;    Biopotential electrodes;    Electrodes;   
Others  :  798073
DOI  :  10.1186/1475-925X-11-33
 received in 2011-12-20, accepted in 2012-05-14,  发布年份 2012
PDF
【 摘 要 】

The control of robotic prostheses based on pattern recognition algorithms is a widely studied subject that has shown promising results in acute experiments. The long-term implementation of this technology, however, has not yet been achieved due to practical issues that can be mainly attributed to the use of surface electrodes and their highly environmental dependency. This paper describes several implantable electrodes and discusses them as a solution for the natural control of artificial limbs. In this context “natural” is defined as producing control over limb movement analogous to that of an intact physiological system. This includes coordinated and simultaneous movements of different degrees of freedom. It also implies that the input signals must come from nerves or muscles that were originally meant to produce the intended movement and that feedback is perceived as originating in the missing limb without requiring burdensome levels of concentration. After scrutinizing different electrode designs and their clinical implementation, we concluded that the epimysial and cuff electrodes are currently promising candidates to achieving a long-term stable and natural control of robotic prosthetics, provided that communication from the electrodes to the outside of the body is guaranteed.

【 授权许可】

   
2012 Ortiz-Catalan et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706095731236.pdf 1668KB PDF download
Figure 8. 15KB Image download
Figure 7. 18KB Image download
Figure 6. 39KB Image download
Figure 5. 7KB Image download
Figure 4. 51KB Image download
Figure 3. 17KB Image download
Figure 2. 10KB Image download
Figure 1. 38KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Reiter R: Eine neu elecktrokunstand. Grenzgebeiter der Medicin 1948, 1:133-135.
  • [2]Parker P, Englehart K, Hudgins B: Control of powered upper limb prstheses. In Electromyography: physiology, engineering, and noninvasive applications. Edited by Merletti R, Parker P. Wiley-IEEE, New Jersey, USA; 2004:453-475.
  • [3]Cipriani C, Controzzi M, Carrozza MC: The SmartHand transradial prosthesis. J Neuroengineering Rehabilitation 2011, 8:29. BioMed Central Full Text
  • [4]Micera S, Carpaneto J, Raspopovic S: Control of hand prostheses using peripheral information. Biomed Eng, IEEE Rev in 2010, 3:48-68.
  • [5]Almström C, Herberts P, Körner L: Experience with Swedish multifunctional prosthetic hands controlled by pattern recognition of multiple myoelectric signals. Int Orthopaedics 1981, 5:15-21.
  • [6]Hargrove LJ, Englehart K, Hudgins B: A comparison of surface and intramuscular myoelectric signal classification. IEEE Trans Bio-Med Eng 2007, 54(5):847-853.
  • [7]Navarro X, Krueger TB, Lago N, Micera S, Stieglitz T, Dario P: A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J Peripheral Nervous Syst: JPNS 2005, 10(3):229-258.
  • [8]Cogan SF: Neural stimulation and recording electrodes. Annu Rev Biomed Eng 2008, 10:275-309.
  • [9]Cheung KC: Implantable microscale neural interfaces. Biomed Microdevices 2007, 9(6):923-938.
  • [10]Scheme E, Englehart K: Electromyogram pattern recognition for control of powered upper-limb prostheses: State of the art and challenges for clinical use. J Rehabilitation Res Dev 2011, 48(6):643.
  • [11]Lake C, Miguelez J: Comparative Analysis of Microprocessors in Upper Limb Prosthetics. J Prosthet Orthot 2003., 15(2)
  • [12]Grill WM: Selective activation of the nervous system for motor system neural prostheses. In Intelligent systems and technologies in rehabilitation engineering. Edited by Horia-Nicolai LT, Lakhmi CJ. CRC Press, Boca Raton, USA; 2001.
  • [13]Merletti R, Parker P: Electromyography: Physiology, Engineering, and Noninvasive Applications. John Wiley & Sons, New Jersey, USA; 2004.
  • [14]Marin C, Fernández E: Biocompatibility of intracortical microelectrodes: current status and future prospects. Front Neuroengineering 2010, 3(May):1-6.
  • [15]Polikov VS, Reichert WM, Tresco P a: Response of brain tissue to chronically implanted neural electrodes. J Neurosci Methods 2005, 148:1-18.
  • [16]Webster J: Medical Instrumentation, Application and Design. Jhon Wiley & Sons, New Jersey, USA; 1998.
  • [17]Hoffer J, Loeb G: Implantable electrical and mechanical interfaces with nerve and muscle. Ann Biomed Eng 1980, 8:351-360.
  • [18]Grandjean P, Mortimer J: Recruitment properties of monopolar and bipolar epimysial electrodes. Ann Biomed Eng 1986, 14:53-66.
  • [19]Kilgore K, Peckham P, Montague F, Hart R, Bryden A, Keith M, Hoyen H, Bhadra N: An Implanted Upper Extremity Neuroprosthesis Utilizing Myoelectric Control. Proc 2nd Int IEEE EMBS, Conference on Neural Engineering 2005. Arlington, 16-19 Mar.
  • [20]Uhlir JP, Triolo RJ, John A, Davis J, Bieri C: Performance of Epimysial Stimulating Electrodes in the Lower Extremities of Individuals with Spinal Cord Injury. IEEE Trans Neural Syst Rehabil Eng 2004, 12(2):279-287.
  • [21]Keith M: Neuroprostheses for the Upper Extremity. Microsurgery 2001, 21:256-263.
  • [22]Kilgore KL, Peckham PH, Keith MW, Montague FW, Hart RL, Gazdik MM, Bryden AM, Snyder Sa, Stage TG: Durability of implanted electrodes and leads in an upper-limb neuroprosthesis. J Rehabilitation Res Dev 2003, 40(6):457-468.
  • [23]Loeb GE, Peck Ra, Moore WH, Hood K: BION system for distributed neural prosthetic interfaces. Med Eng Phys 2001, 23:9-18.
  • [24]Farrell T, Weir R: Implantable Myoelectric Sensors (IMES) for Intramuscular Electromyogram Recording. IEEE Trans Biomed Eng 2009, 56:159-171.
  • [25]Weir R, Troyk P, DeMichele G, Kerns D: Technical Details of the Implantable Myoelectric Sensor (IMES), System for Multifunction Prosthesis Control. Conf Proc IEEE Eng Med Biol Soc 2005, 7:7337-7340.
  • [26]Baker JJ, Scheme E, Englehart K, Hutchinson DT, Greger B: Continuous detection and decoding of dexterous finger flexions with implantable myoelectric sensors. IEEE Trans Neural Syst Rehabil Eng 2010, 18(4):424-432.
  • [27]Salter ACD, Bagg SD, Creasy JL, Romano C, Romano D, Richmond FJ, Loeb GE: First Clinical Experience with BION Implants for Therapeutic Electrical Stimulation. Neuromodulation: Technol Neural Interface 2004, 7:38-47.
  • [28]Naples G, Mortimer J, Scheiner A, Sweeney J: A Spiral Nerve Cuff Electrode for Peripheral Nerve Stimulation. IEEE Trans Biomed Eng 1988, 35(11):905-916.
  • [29]Grill W, Mortimer J: Stability of Input-Output Properties of Chronically Implanted Multiple Contact Nerve Cuff Stimulating Electrodes. IEEE Trans Rehabil Eng 1998, 6(4):364-373.
  • [30]Struijk J, Thornsen M, Lorsen J, Sinkjaer T: Cuff Electrodes for Long-Term Recording of Natural Sensory Information. IEEE Eng Med Biol Mag 1999, 18(3):91-99.
  • [31]Loeb G, Peck R: Cuff electrodes for chronic stimulation and recording of peripheral nerve activity. J Neurosci Methods 1996, 64:95-103.
  • [32]Waters R, McNeal D, Faloon W, Clifford B: Functional electrical stimulation of the peroneal nerve for hemiplegia. Long-term clinical follow-up. J Bone Jt Surg 1985, 67(5):792-793.
  • [33]Delbeke J: Electrodes and chronic optic nerve stimulation. Biocybernetics Biomed Eng 2011, 31(3):81-94.
  • [34]Nashold BJr, Goldner J, Mullen J, Bright D: Long-Term Pain Control by Direct Peripheral-Nerve Stimulation. J Bone Jt Surg 1982, 64-A:1-10.
  • [35]Walsh J, Maddison K, Baker V, Tesfayesus W, Hillman D, Eastwood P: Treatment Of Obstructive Sleep Apnea With Unilateral Hypoglossal Nerve Stimulation. Am J Respir Crit Care Med 2010, 181:A5393.
  • [36]Hoffer J, Stein R, Haugland M, Sinkjaer T, Durfee W, Schwartz A, Loeb G, Kantor C: Neural signals for command control and feedback in functional neuromuscular stimulation: A review. J Rehabil Res Dev 1996, 33(2):145-157.
  • [37]Sahin M, Haxhiu M, Durand D, Dreshaj I: Spiral nerve cuff electrode for recordings of respiratory output. J Appl Physiol 1997, 83:317-322.
  • [38]Haugland M, Hoffer J, Sinkjaer T: Skin Contact Force Information in Sensory Nerve Signals Recorded by Implanted Cuff Electrodes. IEEE Trans Rehabil Eng 1994, 2:18-28.
  • [39]Tong K, Ronga W, Li L, Cao J: Effects of consecutive slips in nerve signals recorded by implanted cuff electrode. Med Eng Phys 2008, 30:460-465.
  • [40]Haugland M, Lickel A, Haase J, Sinkjaer T: Control of FES thumb Force Using Slip Information Obtained from the Cutaneous Electroneurogram in Quadriplegic Man. IEEE Trans Rehabil Eng 1999, 7(2):215-227.
  • [41]Haugland M, Sinkjaer T: Cutaneous Whole Nerve Recordings Used for Correction of Footdrop in Hemiplegic Man. IEEE Trans Rehabil Eng 1995, 3(4):307-317.
  • [42]Sinkjæ rT, Haase J, Haugland M: Natural neural sensing and artificial muscle control in man. Exp Brain Res 1994, 98(3):542-545.
  • [43]Raspopovic S, Carpaneto J, Udina E, Navarro X, Micera S: On the identification of sensory information from mixed nerves by using single-channel cuff electrodes. J Neuroengineering Rehabil 2010, 7:17. BioMed Central Full Text
  • [44]Sweeney J, Ksienski D, Mortimer J: A Nerve Cuff Technique for Selective Excitation of Peripheral Nerve Trunk Regions. J Appl Physiol 1990, 37(7):706-715.
  • [45]McNeal D, Baker L, Symons J: Recruitment Data for Nerve Cuff Electrodes: Implications for Design of Implantable Stimulators. IEEE Trans Biomed Eng 1989, 36(3):301-308.
  • [46]Stein R, Charles D, Davis L, Jhamandas J, Mannard A, Nichols T: Principles underlying new methods for chronic neural recording. Can J Neurol Sci 1975, 2(3):235-244.
  • [47]Rahal M, Winter J, Taylor J, Donaldson N: An Improved Configuration for the Reduction of EMG in Electrode Cuff Recordings: A Theoretical Approach. IEEE Trans Biomed Eng 2000, 47(9):1281-1284.
  • [48]Larsen JO, Thomsen M, Haugland M, Sinkjær T: Degeneration and regeneration in rabbit peripheral nerve with long-term nerve cuff electrode implant: a stereological study of myelinated and unmyelinated axons. Acta Neuropathologica 1998, 96(4):365-378.
  • [49]Carp J, Chen X, Sheikh H, Wolpaw J: Effects of chronic nerve cuff and intramuscular electrodes on rat triceps surae motor units. Neuroscience Letters 2001, 312(2001):1-4.
  • [50]Romero E, Denef J, Delbeke J, Robert A, Veraart C: Neural morphological effects of long-term implantation of the self-sizing spiral cuff nerve electrode. Med Biol Eng Comput 2001, 39:90-100.
  • [51]Mortimer T, Agnew W, Horch K: Perspectives on new electrode technology for stimulating peripheral nerves with implantable motor prostheses. IEEE Trans Rehabil Eng 1995, 3(2):145-154.
  • [52]Veraart C, Raftopoulos C, Mortimer JT, Delbeke J, Pins D, Michaux G, Vanlierde A, Parrini S, Wanet-Defalque MC: Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res 1998, 813:181-186.
  • [53]Romero E, Denef J, Delbeke J, Robert A, Veraart C: Biocompatibility of planitium-metallized silicone rubber: in vivo and in vitro evaluation. J Biomater Sci Polymer Edn 2004, 15(2):173-188.
  • [54]Crampon MA, Sawan M, Brailovski V, Trochu F: New nerve cuff electrode based on a shape memory alloy armature. Proc 20th Int Conf IEEE EMBS 1998, 20(5):2556-2559.
  • [55]Lin C, Ju M, Soung B, Tseng C: Designing and fabricating micro-pressure sensors for spiral cuff electrodes. Capri Island, 20-22 Mar.; 2003:197-199.
  • [56]Andreasen L, Struijk JJ: Artefact Reduction With Alternative Cuff Configurations. IEEE Trans Biomed Eng 2003, 50(10):1160-1166.
  • [57]Hoffer J: Techniques to study spinal cord peripheral nerve, and muscle activity in freely moving animmals. Neurometh 1990, 15:65-145.
  • [58]Tyler D, Durand D: Functionally selective peripheral nerve stimulation with a flat interface nerve electrode. Neural Syst Rehabilitation Eng, IEEE Trans on 2002, 10(4):294-303.
  • [59]Yoo PB, Durand DM: Selective recording of the canine hypoglossal nerve using a multicontact flat interface nerve electrode. IEEE Trans Bio-Med Eng 2005, 52(8):1461-9.
  • [60]Park H, Durand DM: Motion control of the rabbit ankle joint using a flat interface nerve electrode. In Conf Proc IEEE Eng Med Biol Soc. IEEE, Minniapolis; 2009:6789-92.
  • [61]Schiefer Ma, Polasek KH, Triolo RJ, Pinault GCJ, Tyler DJ: Selective stimulation of the human femoral nerve with a flat interface nerve electrode. J Neural Eng 2010, 7(2):26006.
  • [62]Dhillon G, Horch K: Direct Neural Sensory Feedback and Control of a Prosthetic Arm. IEEE Trans Neural Syst Rehabil Eng 2005, 13(4):468-472.
  • [63]Horch K, Meek S, Taylor TG, Hutchinson DT: Object discrimination with an artificial hand using electrical stimulation of peripheral tactile and proprioceptive pathways with intrafascicular electrodes. IEEE Trans Neural Syst Rehabil Eng 2011, 19(5):483-489.
  • [64]Lawrence SM, Larsen JO, Horch KW, Riso R, Sinkjaer T: Long-Term Biocompatibility of Implanted Polymer-Based Intrafascicular Electrodes. J Biomed Mater Res (Appl Biomater) 2002, 63:501-506.
  • [65]Lawrence SM, Larsen JO, Horch KW, Riso R, Sinkjaer T: Information Contained in Sensory Nerve Recordings Made with Intrafascicular Electrodes. IEEE Trans Biomed Eng 1991, 38(9):846-850.
  • [66]Bossi S, Kammer S, Dorge T, Menciassi A, Hoffmann K, Micera S: An Implantable Microactuated Intrafascicular Electrode for Peripheral Nerves. IEEE Trans Biomed Eng 2009, 56(11):2701-2706.
  • [67]Lawrence S, Dhillon GS, Horch KW: Fabrication and characteristics of an implantable, polymer-based, intrafascicular electrode. J Neurosci Methods 2003, 131(1-2):9-26.
  • [68]Boretius T, Badia J, Pascual-Font A, Schuettler M, Navarro X, Yoshida K, Stieglitz T: A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve. Biosens Bioelectron 2010, 26:62-69.
  • [69]Carpaneto J, Cutrone A, Bossi S, Sergi P, Citi L, Rigosa J, Rossini PM, Micera S: Activities on PNS Neural Interfaces for the Control of Hand Prostheses. In Conf Proc IEEE Eng Med Biol Soc. IEEE, Boston; 2011:4637-4640.
  • [70]Rossini PM, Micera S, Benvenuto A, Carpaneto J, Cavallo G, Citi L, Cipriani C, Denaro L, Denaro V, Di Pino G, Ferreri F, Guglielmelli E, Hoffmann KP, Raspopovic S, Rigosa J, Rossini L, Tombini M, Dario P: Double nerve intraneural interface implant on a human amputee for robotic hand control. Clin Neurophysiology: Official J Int Federation Clin Neurophysiology 2010, 121(5):777-783.
  • [71]Micera BS, Ieee SM, Citi L, Rigosa J, Carpaneto J, Raspopovic S, Pino GD, Rossini L, Ieee M, Yoshida K, Denaro L, Dario P, Ieee F, Rossini PM: Decoding information from neural signals recorded using intraneural electrodes: toward the development of a neurocontrolled hand prosthesis. Proc IEEE 2010, 98(3):407-417.
  • [72]Gassonn M, Hutt B, Goodhew I, Kyberd P, Warwick K: Invasive neural prosthesis for neural signal detection and nerve stimulation. Int J Adapt Control Signal Process 2005, 19:365-375.
  • [73]Normann R, McDonnall D, Clark G: Control of Skeletal Muscle Force with Currents Injected Via an Intrafascicular, Microelectrode Array. Conf Proc IEEE Eng Med Biol Soc, Shanghai 2005, 7:7644-7647.
  • [74]Sharma A, Rieth L, Tathireddy P, Harrison R, Oppermann H, Klein M, Töpper M, Jung E, Normann R, Clark G, Solzbacher F: Long term in vitro functional stability and recording longevity of fully integrated wireless neural interfaces based on the Utah Slant Electrode Array. J Neural Eng 2011, 8(4):1-6.
  • [75]Frankel Ma, Dowden BR, Mathews VJ, Normann Ra, Clark Ga, Meek SG: Multiple-input single-output closed-loop isometric force control using asynchronous intrafascicular multi-electrode stimulation. IEEE Trans Neural Syst Rehabil Eng 2011, 19(3):325-332.
  • [76]Egan J, Baker J, House P, Greger B: Detection and Classification of Multiple Finger Movements Using a Chronically Implanted Utah Electrode Array. In Conf Proc IEEE Eng Med Biol Soc. IEEE, Boston; 2011:7320-7323.
  • [77]Ethier C, Oby ER, Bauman MJ, Miller LE: Restoration of grasp following paralysis through brain-controlled stimulation of muscles. Nature 2012, 485:368-371.
  • [78]Hochberg LR, Serruya MD, Friehs GM, Mukand Ja, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP: Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 2006, 442(7099):164-171.
  • [79]Simeral JD, Kim SP, Black MJ, Donoghue JP, Hochberg LR: Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array. J Neural Eng 2011, 8(2):025027.
  • [80]Prasad A, Sanchez JC: Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing. J Neural Eng 2012, 9(2):026028.
  • [81]Chestek Ca, Gilja V, Nuyujukian P, Foster JD, Fan JM, Kaufman MT, Churchland MM, Rivera-Alvidrez Z, Cunningham JP, Ryu SI, Shenoy KV: Long-term stability of neural prosthetic control signals from silicon cortical arrays in rhesus macaque motor cortex. J Neural Eng 2011, 8(4):045005.
  • [82]Wallman L, Rosengren A, Danielsen N, Laurell T: Geometric design and surface morfology of sieve electrodes, Nerve regeneration and biokompatibility studies. Lyon; 2000:526-530.
  • [83]Kim YH, Kim YJ, Ami KM, Lee C: Nerve Signal Monitoring Using an Implantable Microelectrode. Atlanta, 28-31 Oct.; 2007:1140-1143.
  • [84]Panetsos F, Avendano C, Negredo P, Castro J, Bonacasa V: Neural Prostheses: Electrophysiological and Histological Evaluation of Central Nervous System Alterations Due to Long-Term Implants of Sieve Electrodes to Peripheral Nerves in Cats. IEEE Trans Neural Syst Rehabil Eng 2008, 16(3):223-232.
  • [85]Kawada T, Zheng C, Tanabe S, Uemura T, Sunagawa K, Sugimachi M: A sieve electrode as a potential autonomic neural interface for bionic medicine. Proc 26th Int Conf IEEE EMBS 2004, 2:4318-4321.
  • [86]Lago N, Udina E, Navarro X: Regenerative electrodes for interfacing injured peripheral nerves : neurobiological assessment. In Biomedical Robotics and Biomechatronics, 2006. BioRob 2006. The First IEEE/RAS-EMBS International Conference on. , Pisa; 2006:1149-1153.
  • [87]Minev IR, Chew DJ, Delivopoulos E, Fawcett JW, Lacour SP: High sensitivity recording of afferent nerve activity using ultra-compliant microchannel electrodes: an acute in vivo validation. J Neural Eng 2012, 9(2):1-7.
  • [88]Egeland B, Urbanchek M, Martin D, Kipke D, Jr WK, Cederna P: Engineering and development of a stable, low-impedance, bioelectrical peripheral nerve interface. J Am Coll Surg 2009., 209(3)
  • [89]Song YA, Melik R, Rabie AN, Ibrahim AMS, Moses D, Tan A, Han J, Lin SJ: Electrochemical activation and inhibition of neuromuscular systems through modulation of ion concentrations with ion-selective membranes. Nat Mater 2011, 10(10):1-7.
  • [90]Kim DH, Viventi J, Amsden JJ, Xiao J, Vigeland L, Kim YS, Blanco JA, Panilaitis B, Frechette ES, Contreras D, Kaplan DL, Omenetto FG, Huang Y, Hwang KC, Zakin MR, Litt B, Rogers JA: Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater 2010., 9
  • [91]Shenoy P, Miller K, Crawford B, Rao R: Online Electromyographic Control of a Robotic Prosthesis. IEEE Trans Biomed Eng 2008, 55(3):1128-1135.
  • [92]Sebelius F, Eriksson L, Balkenius C, Laurell T: Myoelectric control of a computer animated hand: A new concept based on the combined use of a tree-structured artificial neural network and a data glove. J Med Eng Technol 2006, 30:2-10.
  • [93]Oskoei M, Hu H: Support Vector Machine-Based Classification Scheme for Myoelectric Control Applied to Upper Limb. IEEE Trans Biomed Eng 2008, 55(8):1956-1965.
  • [94]Huang Y, Englehart K, Hudgins B, Chan A: A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses. IEEE Trans Biomed Eng 2005, 52(11):1801-1811.
  • [95]Englehart K, Hudgins B: A Robust, Real-Time Control Scheme for Multifunction Myoelectric Control. IEEE Trans Biomed Eng 2003, 50(7):848-854.
  • [96]Ramakrishnan A, Sastry R: Wavelet Transforms For Compound Nerve Action Potential Analysis. In Proc RC IEEE-EMBS & 14th BMESI. New Delhi; 1995:2/7-2/71.
  • [97]Bergantz D, Barad H: Neural Network Control of Cybernetic Limb Prostheses. 10th Int Conf IEEE EMBS 1988, 3:1486-1487.
  • [98]Ortiz-Catalan M, Brånemark R, Håkansson B: Biologically Inspired Algorithms Applied to Prosthetic Control. In Proc IASTED Int Conf, Biomedical Engineering. , Innsbruck; 2012:7-15.
  • [99]Hargrove LJ, Scheme EJ, Englehart KB, Hudgins BS: Multiple binary classifications via linear discriminant analysis for improved controllability of a powered prosthesis. IEEE Trans Neural Syst Rehabil Eng 2010, 18:49-57.
  • [100]Sebelius F, Rosén B, Lundborg G: Refined Myoelectric Control in Below-Elbow Amputees Using Artificial Neural Networks and a Data Glove. J Hand Surg 2005, 30A(4):780-789.
  • [101]Hargrove L, Englehart K, Hudgins B: A Comparison of Surface and Intramuscular Myoelectric Signal Classification. IEEE Trans Biomed Eng 2007, 54(5):847-853.
  • [102]Farrell T, Weir R: A Comparison of the Effects of Electrode Implantation and Targeting on Pattern Classification Accuracy for Prosthesis Control. IEEE Trans Biomed Eng 2008, 55(9):2198-2211.
  • [103]Sörnmo L, Laguna P: Bioelectrical Signal Processing in Cardiac and Neurological Applications. Elsevier, Academic Press, Massachusetts, USA; 2005.
  • [104]Almström C, Herberts P, Körner L: Experience with Swedish Multifunctional Prosthetic Hands Controlled by Pattern Recognition of Multiple Myoelectric Signals. Int Orthop 1981, 5:15-21.
  • [105]Zhou P, Lowery MM, Englehart KB, Huang H, Li G, Hargrove L, Dewald JPA, Kuiken TA: Decoding a New Neural-Machine Interface for Control of Artificial Limbs. J Neurophysiol 2007, 98:2974-2982.
  • [106]Kuiken T, Dumanian G, Lipschutz R, Miller L, Stubblefield K: The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthetics Orthotics Int 2004, 28(3):245-253.
  • [107]Herberts P, Almström C, Kadefors R, Lawrence PD: Hand prosthesis control via myoelectric patterns. Acta orthopaedica Scandinavica 1973, 44(4):389-409.
  • [108]Jiang N, Englehart KB, Parker Pa: Extracting simultaneous and proportional neural control information for multiple-DOF prostheses from the surface electromyographic signal. IEEE transactions on bio-medical engineering 2009, 56(4):1070-1080.
  • [109]Muceli S, Farina D: Simultaneous and Proportional Estimation of Hand Kinematics from EMG during Mirrored Movements at Multiple Degrees of Freedom. IEEE Trans Neural Syst Rehabil Eng 2012, 20(3):371-8.
  • [110]Davis L, Gordon T, Hoffer J, Jhamandas J, Stein R: Compound action potentials recorded from mammalian peripheral nerves following ligation or resuturing. J Physiol 1978, 285:543-559.
  • [111]Gordon T, Hoffer J, Jhamandas J, Stein R: Long-Term Effects of Axotomy on Neural Activity During Cat Locomotion. J Physiol 1980, 303:243-263.
  • [112]DeLuca CJ, Gilmore LD, Bloom LJ, Thomson SJ, Cudworth AL, Glimcher MJ: Long-Term Neuroelectric Signal Recording from Severed Nerves. IEEE Trans Rehabil Eng 1982, BME-29(6):393-403.
  • [113]Jia X, Koenig Ma, Zhang X, Zhang J, Chen T, Chen Z: Residual motor signal in long-term human severed peripheral nerves and feasibility of neural signal-controlled artificial limb. J Hand Surgery 2007, 32(5):657-666.
  • [114]Kuiken T, Li G, Lock BA, Lipschutz RDR, Miller LAL, Stubblefield KAK, Englehart KBK: Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA: J Am Med Assoc 2009, 301(6):619.
  • [115]Popovic D, Stein R, Jovanovic K, Dai R, Kostov A, Armstrong W: Sensory nerve recording for closed-loop control to restore motor functions. IEEE Trans Biomed Eng 1993, 40(10):1024-1031.
  • [116]Guiraud D, Stieglitz T, GT G, Divoux J: Original electronic design to perform epimysial and neural stimulation in paraplegia. J Neural Eng 2006, 3:276-286.
  文献评价指标  
  下载次数:163次 浏览次数:70次