期刊论文详细信息
Annals of Occupational and Environmental Medicine
Role of functionally dominant species in varying environmental regimes: evidence for the performance-enhancing effect of biodiversity
Silke Langenheder3  Mark T Bulling4  James I Prosser2  Martin Solan1 
[1] Present address: Ocean and Earth Science, National Oceanography Centre, Southampton, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, UK
[2] Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen, AB24 UU3, UK
[3] Department of Ecology and Genetics/Limnology, Uppsala University, Norbyvägen 18D, Uppsala, 75236, Sweden
[4] Present address: Biological Sciences, University of Derby, Keldleston Road, Derby, DE22 1GB, UK
关键词: Environmental variability;    Resilience;    Resistance;    Buffering effect;    Insurance effect;   
Others  :  1085932
DOI  :  10.1186/1472-6785-12-14
 received in 2012-04-13, accepted in 2012-06-26,  发布年份 2012
PDF
【 摘 要 】

Background

Theory suggests that biodiversity can act as a buffer against disturbances and environmental variability via two major mechanisms: Firstly, a stabilising effect by decreasing the temporal variance in ecosystem functioning due to compensatory processes; and secondly, a performance enhancing effect by raising the level of community response through the selection of better performing species. Empirical evidence for the stabilizing effect of biodiversity is readily available, whereas experimental confirmation of the performance-enhancing effect of biodiversity is sparse.

Results

Here, we test the effect of different environmental regimes (constant versus fluctuating temperature) on bacterial biodiversity-ecosystem functioning relations. We show that positive effects of species richness on ecosystem functioning are enhanced by stronger temperature fluctuations due to the increased performance of individual species.

Conclusions

Our results provide evidence for the performance enhancing effect and suggest that selection towards functionally dominant species is likely to benefit the maintenance of ecosystem functioning under more variable conditions.

【 授权许可】

   
2012 Langenheder et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113181717631.pdf 635KB PDF download
Figure 6. 134KB Image download
Figure 5. 52KB Image download
Figure 4. 86KB Image download
Figure 3. 56KB Image download
Figure 2. 98KB Image download
Figure 1. 56KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Pereira HM, Leadley PW, Proenca V, Alkemade R, Scharlemann JPW, Fernandez-Manjarres JF, Araujo MB, Balvanera P, Biggs R, Cheung WWL, et al.: Scenarios for Global Biodiversity in the 21st Century. Science 2010, 330(6010):1496-1501.
  • [2]Sala OE, Capin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RN, Kinzig A, et al.: Global biodiversity scenarios for the year 2100. Science 2000, 287:1770-1774.
  • [3]Elmqvist T, Folke C, Nystrom M, Peterson G, Bengtsson J, Walker B, Norberg J: Response diversity, ecosystem change, and resilience. Front Ecol Environ 2003, 1(9):488-494.
  • [4]Yachi S, Loreau M: Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc Natl Acad Sci U S A 1999, 96(4):1463-1468.
  • [5]Ives AR, Klug JL, Gross K: Stability and species richness in complex communities. Ecol Lett 2000, 3(5):399-411.
  • [6]Hector A, Hautier Y, Saner P, Wacker L, Bagchi R, Joshi J, Scherer-Lorenzen M, Spehn EM, Bazeley-White E, Weilenmann M, et al.: General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology 2010, 91(8):2213-2220.
  • [7]Leary DJ, Petchey OL: Testing a biological mechanism of the insurance hypothesis in experimental aquatic communities. J Anim Ecol 2009, 78(6):1143-1151.
  • [8]Petchey OL: Testing the insurance hypothesis of biodiversity in aquatic microcosms. In Impact of environmental variablity on ecological systems. Edited by Vasseur DA, McCann KS. New York: Springer; 2007:179-196.
  • [9]Hughes AR, Stachowicz JJ: Seagrass genotypic diversity increases disturbance response via complementarity and dominance. JEcol 2011, 99(2):445-453.
  • [10]Pfisterer AB, Schmid B: Diversity-dependent production can decrease the stability of ecosystem functioning. Nature 2002, 416(6876):84-86.
  • [11]Allison G: The influence of species diversity and stress intensity on community resistance and resilience. Ecol Monogr 2004, 74(1):117-134.
  • [12]van Ruijven J, Berendse F: Diversity enhances community recovery, but not resistance, after drought. J Ecol 2010, 98(1):81-86.
  • [13]Blake RE, Duffy JE: Grazer diversity affects resistance to multiple stressors in an experimental seagrass ecosystem. Oikos 2010, 119(10):1625-1635.
  • [14]Richardson PJ, Horrocks J, Larson DW: Drought resistance increases with species richness in restored populations and communities. Basic Appl Ecol 2010, 11:204-215.
  • [15]Mulder CPH, Uliassi DD, Doak DF: Physical stress and diversity-productivity relationships: The role of positive interactions. P Natl Acad Sci USA 2001, 98(12):6704-6708.
  • [16]Toljander YK, Lindahl BD, Holmer L, Hogberg NOS: Environmental fluctuations facilitate species co-existence and increase decomposition in communities of wood decay fungi. Oecologia 2006, 148(4):625-631.
  • [17]Petchey OL, Casey T, Jiang L, McPhearson PT, Price J: Species richness, environmental fluctuations, and temporal change in total community biomass. Oikos 2002, 99(2):231-240.
  • [18]Zhang QG, Zhang DY: Species richness destabilizes ecosystem functioning in experimental aquatic microcosms. Oikos 2006, 112(1):218-226.
  • [19]Grman E, Lau JA, Schoolmaster DR, Gross KL: Mechanisms contributing to stability in ecosystem function depend on the environmental context. EcolLett 2010, 13(11):1400-1410.
  • [20]Jessup CM, Kassen R, Forde SE, Kerr B, Buckling A, Rainey PB, Bohannan BJM: Big questions, small worlds: microbial model systems in ecology. Trends Ecol Evol 2004, 19:189-197.
  • [21]Langenheder S, Bulling MT, Solan M, Prosser JI: Bacterial biodiversity-ecosystem functioning relations are modified by environmental complexity. PLoS One 2010, 5:e10834.
  • [22]Bell T, Lilley AK, Hector A, Schmid B, King L, Newman JA: A linear method for biodiversity-ecosystem functioning experiments. Am Nat 2009, 174(6):836-849.
  • [23]Jiang L: Negative selection effects suppress relationships between bacterial diversity and ecosystem functioning. Ecology 2007, 88(5):1075-1085.
  • [24]Zuur AF, Ieno EN, Smith GM: Analysing Ecological Data. New York: Springer; 2007.
  • [25]Pinheiro JC, Bates DM: Mixed-effects models in S and S-plus. New York: Springer; 2000.
  • [26]West BT, Welch KB, Gateki AT: Linear mixed models. A practical quide using statistical software: Chapma&Hall/CRC; 2007.
  • [27]Underwood AJ: Experiments in ecology: their logical design and interpretation using analysis of variance. Volume Cambridge. Cambridge: University Press; 1997.
  • [28]Pinheiro JC, Bates DM, DebRoy S, Sarkar D: nlme: an R package for fitting and comparing Gaussian linear and non-linear mixed-effects models. The Comprehensive R Archive Netwoek Website (2010) 2006. http://www.stats.bris.ac.uk/R webcite
  • [29]Loreau M: Biodiversity and ecosystem functioning: A mechanistic model. Proc Nat Acad Sci USA 1998, 95(10):5632-5636.
  • [30]Loreau M, Hector A: Partitioning selection and complementarity in biodiversity experiments. Nature 2001, 412(6842):72-76.
  • [31]Steiner CF, Long ZT, Krumins JA, Morin PJ: Population and community resilience in multitrophic communities. Ecology 2006, 87(4):996-1007.
  • [32]Beveridge OS, Petchey OL, Humphries S: Direct and indirect effects of temperature on the population dynamics and ecosystem functioning of aquatic microbial ecosystems. J Animal Ecol 2010, 79(6):1324-1331.
  • [33]Dang CK, Schindler M, Chauvet E, Gessner MO: Temperature oscillation coupled with fungal community shifts can modulate warming effects on litter decomposition. Ecology 2009, 90(1):122-131.
  • [34]Hicks N, Bulling MT, Solan M, Raffaelli D, White PCL, Paterson DM: Impact of biodiversity-climate futures on primary production and metabolism in a model benthic estuarine system. BMC Ecol 2011, 11:7. BioMed Central Full Text
  • [35]Gonzalez A, Descamps-Julien B: Population and community variability in randomly fluctuating environments. Oikos 2004, 106(1):105-116.
  • [36]Caldeira MC, Hector A, Loreau M, Pereira JS: Species richness, temporal variability and resistance of biomass production in a Mediterranean grassland. Oikos 2005, 110(1):115-123.
  • [37]Clavel J, Julliard R, Devictor V: Worldwide decline of specialist species: toward a global functional homogenization. Front Ecol Environ 2010.
  • [38]Bulling MT, Hicks N, Murray L, Paterson DM, Raffaelli D, White PCL, Solan M: Marine biodiversity-ecosystem functions under uncertain environmental futures. Philos T R Soc B 2010, 365(1549):2107-2116.
  • [39]Godbold JA, Solan M: Relative importance of biodiversity and the abiotic environment in mediating an ecosystem process. Mar Ecol Prog Ser 2009, 396:273-282.
  • [40]Godbold JA, Bulling MT, Solan M: Habitat structure mediates biodiversity effects on ecosystem properties. Proc R Soc Lond B 2011, 278:2510-2518.
  • [41]Gaedke U, Sommer U: The influence of the frequency of periodic disturbances on the the maintenance of phytoplankton diversity. Oecologia 1986, 71:25-28.
  • [42]Polishchuck LV: Contribution analysis of disturbance-caused changes in phytoplankton diversity. Ecology 1999, 80:721-725.
  • [43]Mackey RL, Currie DJ: The diversity-disturbance relationship: Is it generally strong and peaked? Ecology 2001, 82(12):3479-3492.
  • [44]Long ZT, Petchey OL, Holt RD: The effects of immigration and environmental variability on the persistence of an inferior competitor. Ecol Lett 2007, 10(7):574-585.
  • [45]Torsvik V, Ovreas L, Thingstad TF: Prokaryotic diversity - Magnitude, dynamics, and controlling factors. Science 2002, 296(5570):1064-1066.
  • [46]Bulling MT, White PCL, Raffaelli DG, Pierce GJ: Using model systems to address the biodiversity-ecosystem functioning process. Mar Ecol Prog Ser 2006, 311:295-309.
  • [47]Walker MD, Wahren CH, Hollister RD, Henry GHR, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV, Carroll AB, et al.: Plant community responses to experimental warming across the tundra biome. P Natl Acad Sci USA 2006, 103(5):1342-1346.
  • [48]Hillebrand H, Soininen J, Snoeijs P: Warming leads to higher species turnover in a coastal ecosystem. Glob Change Biol 2010, 16(4):1181-1193.
  • [49]Friberg N, Dybkjaer JB, Olafsson JS, Gislason GM, Larsen SE, Lauridsen TL: Relationships between structure and function in streams contrasting in temperature. Freshw Biol 2009, 54(10):2051-2068.
  • [50]Leary DJ, Rip JMK, Petchey OL: The impact of environmental variability and species composition on the stability of experimental microbial populations and communities. Oikos 2012, 121:327-336.
  文献评价指标  
  下载次数:90次 浏览次数:9次