期刊论文详细信息
Biotechnology for Biofuels
The combination of plant-expressed cellobiohydrolase and low dosages of cellulases for the hydrolysis of sugar cane bagasse
Mark D Harrison1  Zhanying Zhang1  Kylie Shand1  Barrie Fong Chong1  Jason Nichols2  Paul Oeller2  Ian M O’Hara1  William OS Doherty1  James L Dale1 
[1] Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 2 George Street, Brisbane 4001, Queensland, Australia
[2] Syngenta Biotechnology Inc., Research Triangle Park, 3054 East Cornwallis Road, Durham 27709-2257, NC, USA
关键词: Saccharification;    Enzymatic hydrolysis;    Pretreatment;    Biomass;    Sugar cane;    Transgenic;    Cellobiohydrolase;    Cellulase;   
Others  :  1084555
DOI  :  10.1186/s13068-014-0131-9
 received in 2014-04-02, accepted in 2014-08-27,  发布年份 2014
PDF
【 摘 要 】

Background

The expression of biomass-degrading enzymes (such as cellobiohydrolases) in transgenic plants has the potential to reduce the costs of biomass saccharification by providing a source of enzymes to supplement commercial cellulase mixtures. Cellobiohydrolases are the main enzymes in commercial cellulase mixtures. In the present study, a cellobiohydrolase was expressed in transgenic corn stover leaf and assessed as an additive for two commercial cellulase mixtures for the saccharification of pretreated sugar cane bagasse obtained by different processes.

Results

Recombinant cellobiohydrolase in the senescent leaves of transgenic corn was extracted using a simple buffer with no concentration step. The extract significantly enhanced the performance of Celluclast 1.5 L (a commercial cellulase mixture) by up to fourfold on sugar cane bagasse pretreated at the pilot scale using a dilute sulfuric acid steam explosion process compared to the commercial cellulase mixture on its own. Also, the extracts were able to enhance the performance of Cellic CTec2 (a commercial cellulase mixture) up to fourfold on a range of residues from sugar cane bagasse pretreated at the laboratory (using acidified ethylene carbonate/ethylene glycol, 1-butyl-3-methylimidazolium chloride, and ball-milling) and pilot (dilute sodium hydroxide and glycerol/hydrochloric acid steam explosion) scales. We have demonstrated using tap water as a solvent (under conditions that mimic an industrial process) extraction of about 90% recombinant cellobiohydrolase from senescent, transgenic corn stover leaf that had minimal tissue disruption.

Conclusions

The accumulation of recombinant cellobiohydrolase in senescent, transgenic corn stover leaf is a viable strategy to reduce the saccharification cost associated with the production of fermentable sugars from pretreated biomass. We envisage an industrial-scale process in which transgenic plants provide both fibre and biomass-degrading enzymes for pretreatment and enzymatic hydrolysis, respectively.

【 授权许可】

   
2014 Harrison et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113162603721.pdf 1373KB PDF download
Figure 8. 19KB Image download
Figure 7. 14KB Image download
Figure 6. 54KB Image download
Figure 5. 46KB Image download
Figure 4. 42KB Image download
Figure 3. 27KB Image download
Figure 2. 32KB Image download
Figure 1. 17KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Marris E: Drink the best and drive the rest. Nature 2006, 444:670-672.
  • [2]Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J, Wyman CE: How biotech can transform biofuels. Nat Biotechnol 2008, 26:169-172.
  • [3]Klemm D: Comprehensive Cellulose Chemistry. Wiley-VCH, Weinheim, New York; 1998.
  • [4]Laureano-Perez L, Teymouri F, Alizadeh H, Dale BE: Understanding factors that limit enzymatic hydrolysis of biomass. Appl Biochem Biotech 2005, 121:1081-1099.
  • [5]John MJ, Thomas S: Biofibres and biocomposites. Carbohyd Polym 2008, 71:343-364.
  • [6]Hendriks ATWM, Zeeman G: Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technol 2009, 100:10-18.
  • [7]Yang B, Wyman CE: Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuel Bioprod Bior 2008, 2:26-40.
  • [8]Macrelli S, Mogensen J, Zacchi G: Techno-economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process. Biotechnology for Biofuels 2012, 5:22. BioMed Central Full Text
  • [9]Sun Y, Cheng JY: Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technol 2002, 83:1-11.
  • [10]Medie FM, Davies GJ, Drancourt M, Henrissat B: Genome analyses highlight the different biological roles of cellulases. Nat Rev Microbiol 2012, 10:227-U.
  • [11]Foreman PK, Brown D, Dankmeyer L, Dean R, Diener S, Dunn-Coleman NS, Goedegebuur F, Houfek TD, England GJ, Kelley AS, Meerman HJ, Mitchell T, Mitchinson C, Olivares HA, Teunissen PJ, Yao J, Ward M: Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J Biol Chem 2003, 278:31988-31997.
  • [12]Coughlan MP, Ljungdahl LG: Comparative biochemistry of fungl and bacterial cellulolytic system. In Biochemistry and Genetics of Cellulose Degradation. Edited by Aubert J-P, Beguin P, Millet J. Academic Press, New York; 1988:11-30.
  • [13]Gritzali M, Brown Ross D Jr: The cellulase system of Trichoderma. In Hydrolysis of Cellulose: Mechanisms of Enzymatic and Acid Catalysis. American Chemical Society, Washington, DC; 1979:237-260. [Advances in Chemistry, vol. 181]
  • [14]Gusakov AV, Salanovich TN, Antonov AI, Ustinov BB, Okunev ON, Burlingame R, Emalfarb M, Baez M, Sinitsyn AP: Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose. Biotechnol Bioeng 2007, 97:1028-1038.
  • [15]Banerjee G, Car S, Scott-Craig JS, Borrusch MS, Walton JD: Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations. Biotechnology for Biofuels 2010, 3:22. BioMed Central Full Text
  • [16]Meyer AS, Rosgaard L, Sorensen HR: The minimal enzyme cocktail concept for biomass processing. J Cereal Sci 2009, 50:337-344.
  • [17]Zhou J, Wang YH, Chu J, Luo LZ, Zhuang YP, Zhang SL: Optimization of cellulase mixture for efficient hydrolysis of steam-exploded corn stover by statistically designed experiments. Bioresour Technol 2009, 100:819-825.
  • [18]Billard H, Faraj A, Lopes Ferreira N, Menir S, Heiss-Blanquet S: Optimization of a synthetic mixture composed of major Trichoderma reesei enzymes for the hydrolysis of steam-exploded wheat straw. Biotechnology for Biofuels 2012, 5:9. BioMed Central Full Text
  • [19]Szijarto N, Siika-aho M, Sontag-Strohm T, Viikari L: Liquefaction of hydrothermally pretreated wheat straw at high-solids content by purified Trichoderma enzymes. Bioresource Technol 2011, 102:1968-1974.
  • [20]Gao D, Chundawat SP, Krishnan C, Balan V, Dale BE: Mixture optimization of six core glycosyl hydrolases for maximizing saccharification of ammonia fiber expansion (AFEX) pretreated corn stover. Bioresour Technol 2010, 101:2770-2781.
  • [21]Barr CJ, Mertens JA, Schall CA: Critical cellulase and hemicellulase activities for hydrolysis of ionic liquid pretreated biomass. Bioresource Technol 2012, 104:480-485.
  • [22]Karlsson J, Medve J, Tjerneld F: Hydrolysis of steam-pretreated lignocellulose: synergism and adsorption for cellobiohydrolase I and endoglucanase II of Trichoderma reesei. Appl Biochem Biotechnol 1999, 82:243-258.
  • [23]Harrison MD, Shand K, Zhang Z, O'Hara IM, Doherty WOS, Dale JL: Effect of pretreatment technology on saccharification of sugar cane bagasse by complex and simple enzyme mixtures. Bioresour Technol 2013, 148:105-113.
  • [24]Kazi FK, Fortman JA, Anex RP, Hsu DD, Aden A, Dutta A, Kothandaraman G: Techno-economic comparison of process technologies for biochemical ethanol production from corn stover. Fuel 2010, 89:S20-S28.
  • [25]Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW: The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 2012, 109:1083-1087.
  • [26]Yang B, Dai Z, Ding S-Y, Wyman CE: Enzymatic hydrolysis of cellulosic biomass. Biofuels 2011, 2:421-450.
  • [27]Klose H, Roder J, Girfoglio M, Fischer R, Commandeur U: Hyperthermophilic endoglucanase for in planta lignocellulose conversion. Biotechnol Biofuels 2012, 5:63. BioMed Central Full Text
  • [28]Oraby H, Venkatesh B, Dale B, Ahmad R, Ransom C, Oehmke J, Sticklen M: Enhanced conversion of plant biomass into glucose using transgenic rice-produced endoglucanase for cellulosic ethanol. Transgenic Research 2007, 16:739-749.
  • [29]Ransom C, Balan V, Biswas G, Dale B, Crockett E, Sticklen M: Heterologous Acidothermus cellulolyticus 1,4-beta-endoglucanase E1 produced within the corn biomass converts corn stover into glucose. Appl Biochem Biotechnol 2007, 137–140:207-219.
  • [30]Verma D, Kanagaraj A, Jin S, Singh ND, Kolattukudy PE, Daniell H: Chloroplast-derived enzyme cocktails hydrolyse lignocellulosic biomass and release fermentable sugars. Plant Biotechnol J 2010, 8:332-350.
  • [31]Nichols JDE, Oeller PWC, Ember BN, Kim MK: Potentiation of enzymatic saccharification. WO Patent Application 2012, ᅟ:115994.
  • [32]Stege JT, Aboushadi N, Djordjevic G, Burke E, Luginbuhl P, Dycaico M, Richardson T, Poland J, Hefner Y, Miles SM: Enzymes for the treatment of lignocellulosics, mucleic acids encoding them and methods for making and using them. WO Patent Application 2008, ᅟ:095033.
  • [33]Bhiri F, Gargouri A, Ben Ali M, Belghith H, Blibech M, Chaabouni SE: Molecular cloning, gene expression analysis and structural modelling of the cellobiohydrolase I from Penicillium occitanis. Enzyme Microb Tech 2010, 46:74-81.
  • [34]Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EGJ, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, et al.: Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 2008, 26:553-560.
  • [35]Matsuoka M, Kyozuka J, Shimamoto K, Kanomurakami Y: The promoters of two carboxylases in a C4 plant (maize) direct cell-specific, light-regulated expression in a C3 plant (rice). Plant J 1994, 6:311-319.
  • [36]Loomis WD, Battaile J: Plant phenolic compounds and the isolation of plant enzymes. Phytochemistry 1966, 5:423-438.
  • [37]Harrison MD, Geijskes J, Coleman HD, Shand K, Kinkema M, Palupe A, Hassall R, Sainz M, Lloyd R, Miles S, Dale JL: Accumulation of recombinant cellobiohydrolase and endoglucanase in the leaves of mature transgenic sugar cane. Plant Biotechnol J 2011, 9:884-896.
  • [38]Zhang Z, O'Hara IM, Rackemann DW, Doherty WOS: Low temperature pretreatment of sugarcane bagasse at athmospheric pressure using mixtures of ethylene carbonate and ethylene glycol. Green Chemistry 2013, 15:255-264.
  • [39]Karatzos SK, Edye LA, Doherty WOS: Sugarcane bagasse pretreatment using three imidazolium-based ionic liquids; mass balances and enzyme kinetics. Biotechnology for Biofuels 2012, 5:62. BioMed Central Full Text
  • [40]Sun XF, Xu F, Sun RC, Fowler P, Baird MS: Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydrate Research 2005, 340:97-106.
  • [41]Li CL, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S: Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresource Technol 2010, 101:4900-4906.
  • [42]Carpita NC, Gibeaut DM: Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 1993, 3:1-30.
  • [43]Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK: Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels 2010, 3:10. BioMed Central Full Text
  • [44]Alavez-Ramirez R, Montes-Garcia P, Martinez-Reyes J, Altamirano-Juarez DC, Gochi-Ponce Y: The use of sugarcane bagasse ash and lime to improve the durability and mechanical properties of compacted soil blocks. Constr Build Mater 2012, 34:296-305.
  • [45]Segel L, Creely JJ, Martin AEJ, Conrad CM: An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal 1962, 29:786-794.
  • [46]Jalak J, Kurasin M, Teugjas H, Valjamae P: Endo-exo synergism in cellulose hydrolysis revisited. Journal of Biological Chemistry 2012, 287:28802-28815.
  • [47]Harris PV, Welner D, McFarland KC, Re E, Navarro Poulsen JC, Brown K, Salbo R, Ding H, Vlasenko E, Merino S, Xu F, Cherry J, Larsen S, Lo Leggio L: Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 2010, 49:3305-3316.
  • [48]Saloheimo M, Paloheimo M, Hakola S, Pere J, Swanson B, Nyyssonen E, Bhatia A, Ward M, Penttila M: Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur J Biochem 2002, 269:4202-4211.
  • [49]Medve J, Stahlberg J, Tjerneld F: Adsorption and synergism of cellobiohydrolase I and II of Trichoderma reesei during hydrolysis of microcrystalline cellulose. Biotechnol Bioeng 1994, 44:1064-1073.
  • [50]Warden AC, Little BA, Haritos VS: A cellular automaton model of crystalline cellulose hydrolysis by cellulases. Biotechnol Biofuels 2011, 4:39. BioMed Central Full Text
  • [51]Devaiah SP, Requesens DV, Chang YK, Hood KR, Flory A, Howard JA, Hood EE: Heterologous expression of cellobiohydrolase II (Cel6A) in maize endosperm. Transgenic Res 2013, 22:477-488.
  • [52]Hayden C, Fake G, Carroll J, Hood E, Howard J: Synergistic activity of plant extracts with microbial cellulases for the release of free sugars. Bioenerg Res 2012, 5:398-406.
  • [53]Zheng Y, Pan Z, Zhang R, Wang D, Jenkins B: Non-ionic surfactants and non-catalytic protein treatment on enzymatic hydrolysis of pretreated Creeping Wild Ryegrass. Appl Biochem Biotechnol 2008, 146:231-248.
  • [54]Kumar R, Wyman CE: Effect of additives on the digestibility of corn stover solids following pretreatment by leading technologies. Biotechnol Bioeng 2009, 102:1544-1557.
  • [55]Yang B, Wyman CE: BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol Bioeng 2006, 94:611-617.
  • [56]Han YJ, Chen HZ: Synergism between hydrophobic proteins of corn stover and cellulase in lignocellulose hydrolysis. Biochem Eng J 2010, 48:218-224.
  • [57]Brethauer S, Studer MH, Yang B, Wyman CE: The effect of bovine serum albumin on batch and continuous enzymatic cellulose hydrolysis mixed by stirring or shaking. Bioresour Technol 2011, 102:6295-6298.
  • [58]Kumar L, Arantes V, Chandra R, Saddler J: The lignin present in steam pretreated softwood binds enzymes and limits cellulose accessibility. Bioresour Technol 2012, 103:201-208.
  • [59]Negrotto D, Jolley M, Beer S, Wenck AR, Hansen G: The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Reports 2000, 19:798-803.
  • [60]Ingham DJ, Beer S, Money S, Hansen G: Quantitative real-time PCR assay for determining transgene copy number in transformed plants. Biotechniques 2001, 31:132-134.
  • [61]Van Tilbeurgh H, Claeyssens M, Debruyne CK: The use of 4-methylumbelliferyl and other chromophoric glycosides in the study of cellulolytic enzymes. FEBS Letters 1982, 149:152-156.
  • [62]Deshpande MV, Eriksson KE, Pettersson LG: An assay for selective determination of exo-1,4,-beta-glucanases in a mixture of cellulolytic enzymes. Anal Biochem 1984, 138:481-487.
  • [63]Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D: Determination of structural carbohydrates and lignin in biomass National Renewable Energy Laboratory. Battelle, USA; 2008.
  文献评价指标  
  下载次数:103次 浏览次数:26次