期刊论文详细信息
Chemistry Central Journal
Hydrogen peroxide route to Sn-doped titania photocatalysts
Václav Štengl1  Tomáš Matys Grygar1  Jiří Henych1  Martin Kormunda2 
[1] Faculty of the Environment, J.E. Purkyně University, Králova Výšina 7, 400 96, Ústí nad Labem, Czech Republic
[2] Department of Physics, Faculty of Science, J.E. Purkyně University, České mládeže 8, 400 96, Ústí nad Labem, Czech Republic
关键词: Photocatalysis;    Vis light;    Wet synthesis;    Sn doping;    TiO2;   
Others  :  788063
DOI  :  10.1186/1752-153X-6-113
 received in 2012-08-29, accepted in 2012-09-25,  发布年份 2012
【 摘 要 】

Background

The work aims at improving photocatalytic activity of titania under Vis light irradiation using modification by Sn ions and an original, simple synthesis method. Tin-doped titania catalysts were prepared by thermal hydrolysis of aqueous solutions of titanium peroxo-complexes in the presence of SnCl4 or SnCl2 using an original, proprietary "one pot" synthesis not employing organic solvents, metallo-organic precursors, autoclave aging nor post-synthesis calcination. The products were characterized in details by powder diffraction, XPS, UV–vis, IR, and Raman spectroscopies, electron microscopy and surface area and porosity measurements

Results

The presence of tin in synthesis mixtures favors the formation of rutile and brookite at the expense of anatase, decreases the particle size of all formed titania polymorphs, and extends light absorption of titania to visible light region >400 nm by both red shift of the absorption edge and introduction of new chromophores. The photocatalytic activity of titania under UV irradiation and >400 nm light was tested by decomposition kinetics of Orange II dye in aqueous solution

Conclusions

Doping by Sn improves titania photoactivity under UV light and affords considerable photoactivity under >400 nm light due to increased specific surface area and a phase heterogeneity of the Sn-doped titania powders.

【 授权许可】

   
2012 Štengl et al.; licensee Chemistry Central Ltd.

【 参考文献 】
  • [1]Vinodgopal K, Kamat PV: Enhanced rates of photocatalytic degradation of an azo-dye using SnO2/TiO2 coupled semiconductor thin-films. Environ Sci Technol 1995, 29(3):841-845.
  • [2]Lin J, Yu JC, Lo D, Lam SK: Photocatalytic activity of rutile Ti1-xSnxO2 solid solutions. J Catal 1999, 183(2):368-372.
  • [3]Oropeza FE, Davies B, Palgrave RG, Egdell RG: Electronic basis of visible region activity in high area Sn-doped rutile TiO2 photocatalysts. Phys Chem Chem Phys 2011, 13(17):7882-7891.
  • [4]Cao YA, Yang WS, Zhang WF, Liu GZ, Yue PL: Improved photocatalytic activity of Sn4+ doped TiO2 nanoparticulate films prepared by plasma-enhanced chemical vapor deposition. New Journal of Chemistry 2004, 28(2):218-222.
  • [5]Sayilkan F, Asiltuerk M, Tatar P, Kiraz N, Sener S, Arpac E, Sayilkan H: Photocatalytic performance of Sn-doped TiO2 nanostructured thin films for photocatalytic degradation of malachite green dye under UV and VIS-lights. Mater Res Bull 2008, 43(1):127-134.
  • [6]Boppana VBR, Lobo RF: Photocatalytic degradation of organic molecules on mesoporous visible-light-active Sn(II)-doped titania. J Catal 2011, 281(1):156-168.
  • [7]Zhao Y, Liu J, Shi LY, Yuan SA, Fang JH, Wang ZY, Zhang MH: Surfactant-free synthesis uniform Ti1-xSnxO2 nanocrystal colloids and their photocatalytic performance. Appl Catal B-Environ 2010, 100(1–2):68-76.
  • [8]Hirano M, Dozono H, Kono T: Hydrothermal synthesis and properties of solid solutions and composite nanoparticles in the TiO2-SnO2 system. Mater Res Bull 2011, 46(9):1384-1390.
  • [9]Liu J, Zhao Y, Shi LY, Yuan SA, Fang JH, Wang ZY, Zhang MH: Solvothermal Synthesis of Crystalline Phase and Shape Controlled Sn4+-Doped TiO2 Nanocrystals: Effects of Reaction Solvent. ACS Applied Materials & Interfaces 2011, 3(4):1261-1268.
  • [10]Cerny Z, Stengl V: Method of production photocatalytic active monodispersed titanium(IV) oxide. CZ 301 006 B6, Czech Rep. 2009.
  • [11]Stengl V, Bakardjieva S: Molybdenum-Doped Anatase and Its Extraordinary Photocatalytic Activity in the Degradation of Orange II in the UV and vis Regions. J Phys Chem C 2010, 114(45):19308-19317.
  • [12]Stengl V, Velicka J, Marikova M, Matys Grygar T: New Generation Photocatalysts: How Tungsten Influences the Nanostructure and Photocatalytic Activity of TiO2 in the UV and Visible Regions. ACS Applied Materials & Interfaces 2011, 3(10):4014-4023.
  • [13]Bakardjieva S, Subrt J, Stengl V, Perez-Maqueda LA, Alario-Franco MA: Characterization of photocatylitically active TiO2 by electron microscopy: Proceedings of the 5th Multinational Congress on Electron Microscopy. Lecce, Italy: Rinton Press, Inc, 565 Edmund Terrace, Princeton, NJ 07652 USA; 2001:463-464. Conference: 5th Multinational Congress on Electron Microscopy
  • [14]Stengl V, Subrt J, Bezdicka P, Marikova M, Bakardjieva S: Homogeneous precipitation with urea - An easy process for making spherical hydrous metal oxides. In Conference: 5th International Conference on Solid State Chemistry. Edited by Sajgalik P, Drabik M, Varga S. Bratislava, Slovakia: Trans Tech Publications Ltd, Brandrain 6, CH-8707 Zurich-Uetikon, Switzerland; 2003:121-126. [Solid State Phenomena, Volume: 90-91] Date: Jul 07-12, 200, Solid State Chemistry V
  • [15]Krysa J, Keppert M, Jirkovsky J, Stengl V, Subrt J: The effect of thermal treatment on the properties of TiO2 photocatalyst. Mater Chem Phys 2004, 86(2–3):333-339.
  • [16]Stengl V, Bakardjieva S, Murafa N: Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles. Mater Chem Phys 2009, 114(1):217-226.
  • [17]Václav Štengl , Tomáš Matys Grygar : The Simplest Way to Iodine-Doped Anatase for Photocatalysts Activated by Visible Light. International Journal of Photoenergy 2011, 2011(Article ID 685935):13.
  • [18]Stengl V, Bakardjieva S, Bludska J: Se and Te-modified titania for photocatalytic applications. J Mater Sci 2011, 46(10):3523-3536.
  • [19]Sui RH, Young JL, Berlinguette CP: Sol–gel synthesis of linear Sn-doped TiO2 nanostructures. J Mater Chem 2010, 20(3):498-503.
  • [20]Li DR, Sun LN, Hu CW: Simple Preparation of the Photocatalyst of Sn2+-doped Titania. Chin Chem Lett 2006, 17(8):1089-1092.
  • [21]Stengl V, Houskova V, Bakardjieva S, Murafa N, Havlin V: Optically Transparent Titanium Dioxide Particles Incorporated in Poly(hydroxyethyl methacrylate) Thin Layers. J Phys Chem C 2008, 112(50):19979-19985.
  • [22]Lachheb H, Puzenat E, Houas A, Ksibi M, Elaloui E, Guillard C, et al.: Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl Catal Environ 2002, 39(1):75-90.
  • [23]Ohtani B: Photocatalysis A, to Z-What we know and what we do not know in a scientific sense. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2010, 11(4):157-178.
  • [24]Nag M, Basak P, Manorama SV: Low-temperature hydrothermal synthesis of phase-pure rutile titania nanocrystals: Time temperature tuning of morphology and photocatalytic activity. Mater Res Bull 2007, 42(9):1691-1704.
  • [25]Aruna ST, Tirosh S, Zaban A: Nanosize rutile titania particle synthesis a hydrothermal method without mineralizers. J Mater Chem 2000, 10(10):2388-2391.
  • [26]Subrt J, Stengl V: Preparation of acicular alpha-Fe2O3 (Hematite). J Mater Sci Lett 1993, 12(11):836-838.
  • [27]Kumar KNP, Keizer K, Burggraaf AJ: Stabilization of the Porous Texture of Nanostructured Titania by Avoiding a Phase-Transformation. J Mater Sci Lett 1994, 13(1):59-61.
  • [28]Cheng HM, Ma JM, Zhao ZG, Qi LM: Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem Mater 1995, 7(4):663-671.
  • [29]Li JG, Ishigaki T, Sun XD: Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions: Phase-selective synthesis and physicochemical properties. J Phys Chem C 2007, 111(13):4969-4976.
  • [30]Liu G, Yang HG, Sun CH, Cheng LN, Wang LZ, Lu GQ, Cheng HM: Titania polymorphs derived from crystalline titanium diboride. CrystEngComm 2009, 11(12):2677-2682.
  • [31]Pottier A, Chaneac C, Tronc E, Mazerolles L, Jolivet JP: Synthesis of brookite TiO2 nanoparticles by thermolysis of TiCl4 in strongly acidic aqueous media. J Mater Chem 2001, 11(4):1116-1121.
  • [32]Kobayashi M, Petrykin V, Tomita K, Kakihana M: Hydrothermal synthesis of brookite-type titanium dioxide with snowflake-like nanostructures using a water-soluble citratoperoxotitanate complex. J Cryst Growth 2011, 337(1):30-37.
  • [33]Zhao J, Wang Z, Wang L, Yang H, Zhao M: Effect of Nuclei on the Formation of Rutile Titania. J Mater Sci Lett 1998, 17(22):1867-1869.
  • [34]Stengl V, Kralova D: Photoactivity of brookite-rutile TiO2 nanocrystalline mixtures obtained by heat treatment of hydrothermally prepared brookite. Mater Chem Phys 2011, 129(3):794-801.
  • [35]Pullar RC, Penn SJ, Wang X, Reaney IM, Alford NM: Dielectric loss caused by oxygen vacancies in titania ceramics. J Eur Ceram Soc 2009, 29(3):419-424.
  • [36]Wu S, Wang G, Wang S, Liu D: Effect of Sn4+ B-Site Substitution on the Microstructure and Dielectric Properties of Ba(Mg1/3Ta2/3)O3 Microwave Ceramics. J Mater Sci Technol 2005, 21(5):773-775.
  • [37]Cox H, Stace AJ: Molecular View of the Anomalous Acidities of Sn2+, Pb2+, and Hg2+. J Am Chem Soc 2004, 126(12):3939-3947.
  • [38]Shi ZM, Yan L, Jin LN, Lu XM, Zhao G: The phase transformation behaviors of Sn2 + −doped Titania gels. J Non-Cryst Solids 2007, 353(22–23):2171-2178.
  • [39]Krishnamurti D: The Raman spectrum of rutile. Proceeding of Indian Academy of Sciences Section A. Indian Academy of Sciences 1962, 55:290-299.
  • [40]Tompsett GA, Bowmaker GA, Cooney RP, Metson JB, Rodgers KA, Seakins JM: The Raman spectrum of brookite, TiO2 (PBCA, Z = 8). Journal of Raman Spectroscopy 1995, 26(1):57-62.
  • [41]Swamy V, Muddle BC, Dai Q: Size-dependent modifications of the Raman spectrum of rutile TiO2. Appl Phys Lett 2006., 89(16)
  • [42]Choi HC, Jung YM, Kim SB: Size effects in the Raman spectra of TiO2 nanoparticles. Vib Spectrosc 2005, 37(1):33-38.
  • [43]Chen L-C, Tsai F-R, Fang S-H, Ho Y-C: Properties of sol–gel SnO2/TiO2 electrodes and their photoelectrocatalytic activities under UV and visible light illumination. Electrochim Acta 2009, 54(4):1304-1311.
  • [44]Kelly S, Pollak FH, Tomkiewicz M: Raman spectroscopy as a morphological probe for TiO2 aerogels. Journal of Physical Chemistry B 1997, 101(14):2730-2734.
  • [45]Kamisaka H, Suenaga T, Nakamura H, Yamashita K: DFT-Based Theoretical Calculations of Nb- and W-Doped Anatase TiO2 Complex Formation between W Dopants and Oxygen Vacancies. J Phys Chem C 2010, 114(29):12777-12783.
  • [46]Shao GS, Zhang XJ, Yuan ZY: Preparation and photocatalytic activity of hierarchically mesoporous-macroporous TiO2-xNx. Appl Catal Environ 2008, 82(3–4):208-218.
  • [47]Connor PA, Dobson KD, McQuillan AJ: Infrared spectroscopy of the TiO2/aqueous solution interface. Langmuir 1999, 15(7):2402-2408.
  • [48]Jere GV, Patel CC: Infrared absorption studies on peroxy titanium sulphate. Canadian Journal of Chemistry-Revue Canadienne De Chimie 1962, 40(8):1576-1578.
  • [49]Nakamura R, Imanishi A, Murakoshi K, Nakato Y: In situ FTIR studies of primary intermediates of photocatalytic reactions on nanocrystalline TiO2 films in contact with aqueous solutions. J Am Chem Soc 2003, 125(24):7443-7450.
  • [50]Lin W, Zhang YF, Li Y, Ding KN, Li JQ, Xu YJ: Structural characterizations and electronic properties of Ti-doped SnO2 (110) surface: A first-principles study. J Chem Phys 2006, 124(5):054704.
  • [51]Cao YQ, He T, Zhao LS, Wang EJ, Yang WS, Cao YA: Structure and Phase Transition Behavior of Sn4+-Doped TiO2 Nanoparticles. J Phys Chem C 2009, 113(42):18121-18124.
  • [52]Kim KS, Winograd N: Charge-transfer shake-up satellites in X-ray photoelectron-spectra of cations and anions of SrTiO3, TiO2 and Sc2O3. Chem Phys Lett 1975, 31(2):312-317.
  • [53]Ayouchi R, Martin F, Barrado JRR, Martos M, Morales J, Sanchez L: Use of amorphous tin-oxide films obtained by spray pyrolysis as electrodes in lithium batteries. Journal of Power Sources 2000, 87(1–2):106-111.
  • [54]Song SK, Cho JS, Choi WK, Jung HJ, Choi DS, Lee JY, Baik HK, Koh SK: Structure and gas-sensing characteristics of undoped tin oxide thin films fabricated by ion-assisted deposition. Sensors and Actuators B-Chemical 1998, 46(1):42-49.
  • [55]Tsunekawa S, Kang J, Asami K, Kawazoe Y, Kasuya A: Size and time dependences of the valence states of Sn ions in amphoteric tin oxide nanoparticles. Appl Surf Sci 2002, 201(1–4):69-74.
  • [56]Barreca D, Garon S, Tondello E, Zanella P: SnO2 Nanocrystalline Thin Films by XPS. Surface Science Spectra 2000, 7(2):81-85.
  • [57]Strýhal Z, Stofík M, Malý J, Pavlík J: Periodically arranged tin and tin oxide nanoparticles. Proceedings of ICTF 14 & RSD. Gent: University of Gent; 2008:306-310.
  • [58]de Boer JA: The Shape of capillaries. In The Structure and Properties of Porous Materials. Edited by Everett DH, Stone FS. London: Butterworths; 1958:68-92.
  • [59]Wen PH, Itoh H, Tang WP, Feng Q: Single nanocrystals of anatase-type TiO2 prepared from layered titanate nanosheets: Formation mechanism and characterization of surface properties. Langmuir 2007, 23(23):11782-11790.
  • [60]Pan J, Liu G, Lu GM, Cheng HM: On the True Photoreactivity Order of 001}, {010}, and {101 Facets of Anatase TiO2 Crystals. Angew Chem Int Ed 2011, 50(9):2133-2137.
  • [61]Liu G, Yu JC, Lu GQ, Cheng H-M: Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties. Chem Commun 2011, 47(24):6763-6783.
  • [62]Kumar SG, Devi LG: Review on Modified TiO2 Photocatalysis under UV/Visible Light: Selected Results and Related Mechanisms on Interfacial Charge Carrier Transfer Dynamics. J Phys Chem A 2011, 115(46):13211-13241.
  • [63]Fang WQ, Gong X-Q, Yang HG: On the Unusual Properties of Anatase TiO2 Exposed by Highly Reactive Facets. J Phys Chem Lett 2011, 2(7):725-734.
  • [64]Orel ZC, Gunde MK, Orel B: Application of the Kubelka-Munk theory for the determination of the optical properties of solar absorbing paints. Progress in Organic Coatings 1997, 30(1–2):59-66.
  • [65]Zhao WR, Shi HX, Wang DH: Ozonation of Cationic Red X-GRL in aqueous solution: degradation and mechanism. Chemosphere 2004, 57(9):1189-1199.
  • [66]Demirev A, Nenov V: Ozonation of two acidic azo dyes with different substituents. Ozone Sci Eng 2005, 27(6):475-485.
  • [67]Stylidi M, Kondarides DI, Verykios XE: Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO2 suspensions. Appl Catal Environ 2004, 47(3):189-201.
  • [68]Mu Y, Yu HQ, Zheng JC, Zhang SJ: TiO2-mediated photocatalytic degradation of Orange II with the presence of Mn2+ in solution. Journal of Photochemistry and Photobiology A-Chemistry 2004, 163(3):311-316.
  • [69]Yu QL, Ballari MM, Brouwers HJH: Indoor air purification using heterogeneous photocatalytic oxidation. Part II: Kinetic study. Applied Catalysis B-Environmental 2010, 99(1–2):58-65.
  • [70]Ischia M, Campostrini R, Lutterotti L, Garcia-Lopez E, Palmisano L, Schiavello M, Pirillo F, Molinari R: Synthesis, characterization and photocatalytic activity of TiO2 powders prepared under different gelling and pressure conditions. Journal of Sol–gel Science and Technology 2005, 33(2):201-213.
  • [71]Fresno F, Guillard C, Coronado JM, Chovelon JM, Tudela D, Soria J, Herrmann JM: Photocatalytic degradation of a sulfonylurea herbicide over pure and tin-doped TiO2 photocatalysts. Journal of Photochemistry and Photobiology A-Chemistry 2005, 173(1):13-20.
  • [72]Henych J: Titanium Oxide and Its Photocatalytic Activity (in Czech). Thesis: J.E. Purkyně University in Ústí nad Labem; 2010.
  • [73]Stengl V, Houskova V, Bakardjieva S, Murafa N: Photocatalytic Activity of Boron-Modified Titania under UV and Visible-Light Illumination. ACS Applied Materials & Interfaces 2010, 2(2):575-580.
  • [74]Stengl V, Matys Grygar T, Oplustil F, Nemec T: Sulphur mustard degradation on zirconium doped Ti-Fe oxides. J Hazard Mater 2011, 192(3):1491-1504.
  • [75]Jcpds PDF: Release 50. Newtown Square: International Centre for Diffraction Data; 2000.
  • [76]ICSD Database FIZ Karlsruhe G.
  • [77]Brunauer S, Emmett PH, Teller E: Adsorption of gases in multimolecular layers. J Am Chem Soc 1938, 60:309-319.
  • [78]Barrett EP, Joyner LG, Halenda PP: The determination of pore volume and area distributions in porous substances. 1. Computations from nitrogen isotherms. J Am Chem Soc 1951, 73(1):373-380.
  • [79]Christy AA, Kvalheim OM, Velapoldi RA: Quantitative-analysis in diffuse-reflectance spectrometry - a modified Kubelka-Munk equation. Vib Spectrosc 1995, 9(1):19-27.
  文献评价指标  
  下载次数:0次 浏览次数:1次