期刊论文详细信息
Aquatic Biosystems
Kinetics of arsenite removal by halobacteria from a highland Andean Chilean Salar
Contreras-Ortega Carlos1  Gallardo Karem1  Arias Diana1  Silva Pedro1  Rojo Gonzalo1  Queirolo Fabrizio1  Stegen Susana1  Pozo Patricia1  Hengst Martha3  Alfaro Gleny1  Díaz-Palma Paula2 
[1]Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, P.O.1280, Antofagasta, Chile
[2]Advanced Mining Technology Center, AMTC, Universidad de Chile, Tupper 2007, Santiago, Chile
[3]Laboratorio de Complejidad Microbiana y Ecología Funcional, Facultad de Recursos del Mar & Centro de BioInnovación de Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
关键词: Arsenite-Oxidase;    Halobacteria;    Removal;    Arsenic;   
Others  :  794199
DOI  :  10.1186/2046-9063-9-8
 received in 2012-07-17, accepted in 2013-02-21,  发布年份 2013
PDF
【 摘 要 】

Background

The purpose of this study was to identify arsenite-oxidizing halobacteria in samples obtained from Salar de Punta Negra, II Region of Chile. Seven bacterial isolates, numbered as isolates I to VII, grown in a culture medium with 100 ppm as NaAsO2 (As (III)) were tested. Bacterial growth kinetics and the percent of arsenite removal (PAR) were performed simultaneously with the detection of an arsenite oxidase enzyme through Dot Blot analysis.

Results

An arsenite oxidase enzyme was detected in all isolates, expressed constitutively after 10 generations grown in the absence of As (III). Bacterial growth kinetics and corresponding PAR values showed significant fluctuations over time. PARs close to 100% were shown by isolates V, VI, and VII, at different times of the bacterial growth phase; while isolate II showed PAR values around 40%, remaining constant over time.

Conclusion

Halobacteria from Salar de Punta Negra showed promising properties as arsenite removers under control conditions, incubation time being a critical parameter.

【 授权许可】

   
2013 Paula et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705063653297.pdf 767KB PDF download
Figure 4. 75KB Image download
Figure 3. 82KB Image download
Figure 2. 95KB Image download
Figure 1. 55KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Dibner B: Agricola on metals. Norwalk, CT: Burndy Library; 1958.
  • [2]World Health Organization: Environmental Health Criteria 224 Report: Arsenic and arsenic compounds. Second edition. Geneva; 2001.
  • [3]Hunter D: The Diseases of Ocupation. London: English Universities Press Ltd; 1969.
  • [4]Bissen M, Frimmel FH: Arsenic-a review part I: occurrence, toxicity, speciation, mobility. Acta Hydrochimica et Hydrobiologica 2003, 31:9-18.
  • [5]Simeonova DD, Micheva K, Muller DA, Lagarde F, Lett MC, Groudeva VI, Lièvremont D: Arsenite oxidation in batch reactors with alginate-immobilized ULPAs1 strain. Biotechnol Bioeng 2005, 91:441-446.
  • [6]Anderson G, Williams J, Hilles R: The purification and characterization of arsenite oxidase from Alcaligenes faecalis, a molybdenum-containing hydroxylase. J Biol Chem 1992, 267:23674-23682.
  • [7]Conrads T, Ellis P, Hille R, Kuhn P: Cristal structure of the 100 kDa arsenite oxidase from Alcaligenes faecalis in two crystal forms at 1.64 Å and 2,03 Å. Elsevier Sci Rev 2001, 9:125-132.
  • [8]Ehrlich L: Bacterial oxidation of As (III) compounds. In Environmental Chemistry of Arsenic. Edited by Frankenberger Jr WT. New York: Marcel Dekker; 2001:313-328.
  • [9]Lebrun E, Brugna M, Bayman F, Muller D, Lièvremont D, Lett M, Nitschke W: Arsenite oxidase, an ancient bioenergetic enzyme. Mol Biol Evol 2003, 20:686-693.
  • [10]Oremland S, Hoeft S, Santini J, Bano N, Hollibaugh R, Hollibaugh J: Anaerobic oxidation of arsenite in mono lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1. Environ Microbiol Rev 2002, 68:4.795-4.802.
  • [11]Wildfang E, Healy S, Aposhian H: Arsenic. In Molecular biology and toxicology of metals. Edited by Zalups RK, Koropatnick DJ. London: Taylor and Francis; 2000:75-112.
  • [12]Valenzuela C, Campos VL, Yañez J, Zaror CA, Mondaca MA: Isolation of arsenite-oxidizing bacteria from arsenic-enriched sediments from Camarones river, Northern Chile. Bull Environ Contam Toxicol 2009, 82:593-596.
  • [13]Lizama C, Monteoliva-Sanchez M, Prado B, Ramos-Cormenzana A, Weckesser J, Campos V: Taxonomic study of extreme halophilic archaea isolated from the “Salar de Atacama”, Chile. Syst Appl Microbiol 2001, 24:464-474.
  • [14]Risarcher F: The origin of brines and salts in Chilean salars: a hydrochemical review. Elsevier Sci Rev 2003, 63:249-293.
  • [15]Sobolev D, Begonia MFT: Effects of heavy metal contamination upon soil microbes: lead-induced changes in general and denitrifying microbial communities as evidenced by molecular markers. Int J Environ Res Public Health 2008, 5:450-456.
  • [16]Pumarola A: Book of Microbiology and Medical Parasitology. 2nd edition. Barcelona: Masson S.A; 1987.
  • [17]Doelman P, Haanstrax L: Short-term and long-term effects of cadmium, chromium, copper, nickel, lead and zinc on soil microbial respiration in relation to abiotic soil factors. Plant Soil 1979, 79:317-327.
  • [18]Hemida SK, Omar SA, Abdel-Mallek AY: Microbial populations and enzyme activity in soil treated with heavy metals. Water Air Soil Pollut 1997, 95:13-22.
  • [19]Bianchini A, Playle RC, Wood CM, Walsh PJ: Mechanism of acute silver toxicity in marine invertebrates. Aquat Toxicol 2005, 72:67-82.
  • [20](AWWA) American Water Works Association: Water Quality and Treatment. 4th edition. Denver: American Water Works Association; 1990.
  • [21]Morel F, Hering J: Principles and Applications of Aquatic Chemistry. New York, USA: John Wiley & Sons Inc.; 1993.
  • [22]Silver S, Phung LT: Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl Environ Microbiol 2005, 71:599-608.
  • [23]Inskeep WP, McDermott TR, Fendorf S: Arsenic (V)/(III) cycling in soils and natural waters. In Environmental Chemistry of Arsenic. Edited by Frankenberger WTJr. New York: Marcel Dekker; 2001:183-215.
  • [24]Macy JM, Santini JM: Unique modes of arsenate respiration by Chrysiogenes arsenates and Desulfomicrobium sp. str. Ben-R, sp. str. Ben-RB. In Environmental Chemistry of Arsenic. Edited by Frankenberger WTJr. New York: Marcel Dekker; 2001:279-312.
  • [25]Oremland R, Stolz JF: The ecology of arsenic. Science 2003, 300:939-934.
  • [26]vanden Hoven RN, Santini JM: Arsenite oxidation by the heterotroph Hydrogenophaga sp. str. NT-14: the arsenite oxidase and its physiological electron acceptor. Biochim Biophys Acta 2004, 1656:148-155.
  • [27]Turner AW: Bacterial oxidation of arsenite. Nature 1949, 164:76-77.
  • [28]Phillips S, Taylor M: Oxidation of arsenite to arsenate by Alcaligenes faecalis. Appl Environ Microbiol 1976, 32:392-399.
  • [29]Richey C, Chovanec P, Hoeft S, Oremland RS, Basu P, Stolz JF: Respiratory arsenate reductase as a bidirectional enzyme. Biochem Biophys Res Commun 2009, 382:298-302.
  • [30]Hoeft SE, Switzer Blum J, Stolz JF, Tabita FR, Witte B, King GM, Santini JM, Oremland RS: Alkalilimnicola ehrlichii sp. nov., a novel arsenite-oxidizing haloalkaliphilic gamma proteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor. Int J Syst Evol Microbiol 2007, 57:504-512.
  • [31]Stolz JF, Basu P, Santini JM, Oremland R: Arsenic and selenium in microbial metabolism. Microbiology 2006, 60:107-130.
  • [32]Duquense K, Lieutaud A, Ratouchniak J, Muller D, Lett M, Bonnefoy V: Arsenite oxidation by a chemoautotrophic moderately acidophilic Thiomonas sp.: from the strain to gene study. Environ Microbiol 2008, 10:228-237.
  • [33]Kashyap DR, Botero LM, Franck WL, Hassett DJ, Mc Dermott TR: Complex regulation of arsenite oxidation by Agrobacterium tumefaciens. J Bacteriol 2006, 188:1081-1088.
  • [34]Osborne TH, Jamieson HE, Hudson-Edwards KA, Nordstrom DK, Walker SR, Ward SA, Santini JM: Microbial oxidation of arsenite in a subarctic environment: diversity of arsenite oxidase genes and identification of a psychrotolerant arsenite oxidizer. BMC Microbiol 2005, 10:205.
  • [35]Norton GJ, Duan G, Dasgupta T, Islam MR, Lei M, Zhu Y, Deacon CM, Moran AC, Islam S, Zhao FJ: Environmental and genetic control of arsenic accumulation and speciation in rice grain: comparing a range of common cultivars grown in contaminated sites across Bangladesh, China, and India. Environ Sci Technol 2010, 43:8381-8386.
  • [36]Botero L, Franck W, Hassett D, Kashyap D, McDemott T: Complex regulation of arsenic oxidation in Agrobacterium tumefaciens. J Bacteriol 2005, 188:1081-1088.
  • [37]Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248-254.
  • [38]Hershey JW, Oostdyk TS, Keliher PN: Determination of arsenic and selenium in environmental and agricultural samples by hydride generation atomic absorption spectrometry. J Assoc Off Anal Chem 1988, 71:1090-1093.
  • [39]Sakamoto H, Susa Y, Ishiyama H, Tomiyasu T, Anazawa K: Determination of trace amounts of total arsenic in environmental samples by hydride generation flow injection-AAS using a mixed acid as a pretreatment agent. Analyt Sci 2001, 17:1067-1071.
  • [40]Maroto A, Riu J, Boqué R, Rius F: Estimating uncertainties of analytical results using information from the validation process. Analytical Chimica Acta 1999, 391:173-185.
  • [41]International Organization for Standardization and International Electrotechnical Commission Conformity assessment: General requirements for the competence of testing and calibration laboratories. Geneva: ISO; 2005. ISO/IEC 17025
  文献评价指标  
  下载次数:79次 浏览次数:53次