期刊论文详细信息
BMC Biotechnology
CdSe/ZnS Quantum Dots trigger DNA repair and antioxidant enzyme systems in Medicago sativa cells in suspension culture
Ana R Santos1  Ana S Miguel3  Anca Macovei2  Christopher Maycock5  Alma Balestrazzi2  Abel Oliva4  Pedro Fevereiro5 
[1] Plant Cell Biotechnology Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal
[2] Department of Biology and Biotechnology, via Ferrata 1, 27100 Pavia, Italy
[3] Organic Synthesis Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal
[4] Biomolecular Diagnostics Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal
[5] Universidade de Lisboa, Faculdade de Ciências, 1749-016 Lisboa, Portugal
关键词: Genotoxicity;    Cytotoxicity;    Medicago sativa;    Plant cells;    3-Mercaptopropanoic acid;    CdSe/ZnS quantum dots;   
Others  :  835011
DOI  :  10.1186/1472-6750-13-111
 received in 2013-10-15, accepted in 2013-12-16,  发布年份 2013
PDF
【 摘 要 】

Background

Nanoparticles appear to be promising devices for application in the agriculture and food industries, but information regarding the response of plants to contact with nano-devices is scarce. Toxic effects may be imposed depending on the type and concentration of nanoparticle as well as time of exposure. A number of mechanisms may underlie the ability of nanoparticles to cause genotoxicity, besides the activation of ROS scavenging mechanisms. In a previous study, we showed that plant cells accumulate 3-Mercaptopropanoic acid-CdSe/ZnS quantum dots (MPA-CdSe/ZnS QD) in their cytosol and nucleus and increased production of ROS in a dose dependent manner when exposed to QD and that a concentration of 10 nM should be cyto-compatible.

Results

When Medicago sativa cells were exposed to 10, 50 and 100 nM MPA-CdSe/ZnS QD a correspondent increase in the activity of Superoxide dismutase, Catalase and Glutathione reductase was registered. Different versions of the COMET assay were used to assess the genotoxicity of MPA-CdSe/ZnS QD. The number of DNA single and double strand breaks increased with increasing concentrations of MPA-CdSe/ZnS QD. At the highest concentrations, tested purine bases were more oxidized than the pyrimidine ones. The transcription of the DNA repair enzymes Formamidopyrimidine DNA glycosylase, Tyrosyl-DNA phosphodiesterase I and DNA Topoisomerase I was up-regulated in the presence of increasing concentrations of MPA-CdSe/ZnS QD.

Conclusions

Concentrations as low as 10 nM MPA-CdSe/ZnS Quantum Dots are cytotoxic and genotoxic to plant cells, although not lethal. This sets a limit for the concentrations to be used when practical applications using nanodevices of this type on plants are being considered. This work describes for the first time the genotoxic effect of Quantum Dots in plant cells and demonstrates that both the DNA repair genes (Tdp1β, Top1β and Fpg) and the ROS scavenging mechanisms are activated when MPA-CdSe/ZnS QD contact M. sativa cells.

【 授权许可】

   
2013 Santos et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140715100027741.pdf 695KB PDF download
Figure 4. 76KB Image download
Figure 3. 23KB Image download
Figure 2. 64KB Image download
Figure 1. 54KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Karlsson H: The comet assay in nanotoxicology research. Anal Bioanal Chem 2010, 398:651-666.
  • [2]Walling MA, Novak JA, Shepard JR: Quantum dots for live cell and in vivo imaging. Int J Mol Sci 2009, 10(2):441-491.
  • [3]Biju V, Itoh T, Ishikawa M: Delivering quantum dots to cells: bio-conjugated quantum dots for targeted and extracellular and intracellular imaging. Chem Soc Rev 2010, 39:3031-3056.
  • [4]Kirchner C, Liedl T, Kudera S, Pellegrino T, Javier AM, Gaub H-E, Stölzle S, Fertig N, Parak WJ: Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 2005, 5(2):331-338.
  • [5]Miguel AS, Maycock C, Oliva A: Synthesis and functionalization of CdSe/ZnS QD using the successive ion layer adsorption reaction and mercaptopropionic acid phase transfer methods. In Nanoparticles in Biology and Medicine. Methods in Molecular Biology Volume 906. Humana Press; 2012:143-155.
  • [6]Medintz IL, Uyeda HT, Goldman ER, Mattoussi H: Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 2005, 4:435-446.
  • [7]Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP: Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281(5385):2013-2016.
  • [8]Santos A, Miguel A, Tomaz L, Malhó R, Maycock C, Patto C, Fevereiro P, Oliva A: The impact of CdSe/ZnS quantum dots in cells of Medicago sativa in suspension culture. J Nanobiotechnol 2010, 8:24. BioMed Central Full Text
  • [9]Apel K, Hirt H: Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 2004, 55:373-399.
  • [10]Smeets K, Ruytinx J, Semane B, van Belleghem FT, van Sanden S, Vangronsveld J, Cuypers A: Cadmium-induced transcriptional and enzymatic alterations related to oxidative stress. Environ Exp Bot 2008, 63(1–3):1-8.
  • [11]Kumari M, Mukherjee A, Chandrasekaran N: Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 2009, 407:5243-5246.
  • [12]Liu D, Jiang W, Wang W, Zhai L: Evaluation of metal ion toxicity on root tip cells by the Allium test. Isr J Plant Sci 1995, 43:125-133.
  • [13]Shah K, Dubey RS: Effect of cadmium on RNA level as well as activity and molecular forms of ribonuclease in growing rice seedlings. Plant Physiol Biochem 1995, 33:577-584.
  • [14]Green M, Howman E: Semiconductor quantum dots and free radical induced DNA nicking. Chem Commun 2005, 1:121-123.
  • [15]Khalil WKB, Girgis E, Emam AN, Mohamed MB, Rao KV: Genotoxicity evaluation of nanomaterials: DNA damage, micronuclei, and 8-hydroxy-2-deoxyguanosine induced by magnetic doped CdSe quantum dots in male mice. Chem Res Toxicol 2011, 24(5):640-650.
  • [16]Larkindale J, Mishkind M, Vierling E: Plant responses to high temperature. In Plant Abiotic Stress. Edited by Jenks MA, Hasegawa PM. Blackwell Publishing Ltd; 2005:100-144.
  • [17]Xue D-W, Jiang H, Hu J, Zhang X-Q, Guo L-B, Zeng D-L, Dong G-J, Sun G-C, Qian Q: Characterization of physiological response and identification of associated genes under heat stress in rice seedlings. Plant Physiol Biochem 2012, 61:46-53.
  • [18]Zhao F-Y, Liu W, Zhang S-Y: Different responses of plant growth and antioxidant system to the combination of cadmium and heat stress in transgenic and non-transgenic rice. J Integr Plant Biol 2009, 51(10):942-950.
  • [19]Alsher R, Erturk N, Heath L: Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 2002, 53:1331-1341.
  • [20]Gechev T, Breusegem F, Stone J, Denev I, Laloi C: Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays 2006, 28:1091-1101.
  • [21]Mohammad MI, Eiji O, Yasuaki S, Yoshiyuki M: Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. J Plant Physiol 2009, 166(15):1587-1597.
  • [22]Guo B, Liang Y, Zhu Y: Does salicylic acid regulate antioxidant defense system, cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice? J Plant Physiol 2009, 166(1):20-31.
  • [23]Milone MT, Sgherri C, Clijsters H, Navari-Izzo F: Antioxidative responses of wheat treated with realistic concentration of cadmium. Environ Exp Bot 2003, 50(3):265-276.
  • [24]Rodríguez-Serrano M, Romero-Puertas M-C, Zabalza A, Corpas FJ, Gómez M, del Río LA, Sandalio LM: Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ 2006, 29(8):1532-1544.
  • [25]Sandalio LM, Dalurzo HC, Gómez M, Romero‒Puertas MC, del Río LA: Cadmium‒induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 2001, 52(364):2115-2126.
  • [26]Petersen EJ, Nelson BN: Mechanisms and measurements of nanomaterial-induced oxidative damage to DNA. Anal Bioanal Chem 2010, 398:613-650.
  • [27]Dizdaroglu M: Base-excision repair of oxidative DNA damage by DNA glycosylases. Mutat Res 2005, 591:45-59.
  • [28]Murphy T, George A: A comparison of two DNA base excision repair glycosylases from Arabidopsis thaliana. Biochem Biophys Res Commun 2005, 329:869-872.
  • [29]Scortecci K, Lima A, Carvalho F, Silva U, Agnez-Lima L: Batistuzzo de Medeiros S: a characterization of a MutM/FPG ortholog in sugarcane - a monocot plant. Biochem Biophys Res Commun 2007, 361:1054-1060.
  • [30]Macovei A, Balestrazzi A, Confalonieri M, Faé M, Carbonera D: New insights on the barrel medic MtOGG1 and MtFPG functions in relation to oxidative stress response in planta and during seed imbibitions. Plant Physiol Biochem 2011, 49(9):1040-1050.
  • [31]Yang S, Burgin A, Huizenga B, Robertson C, Yao K, Nash H: A eukaryotic enzyme that can disjoin dead-end covalent complexes between DNA and type I topoisomerases. Proc Natl Acad Sci USA 1996, 93:11534-11539.
  • [32]Macovei A, Balestrazzi A, Confalonieri M, Carbonera D: The tyrosyl-DNA phosphodiesterase gene family in Medicago truncatula Gaertn: bioinformatic investigation and expression profiles in response to copper- and PEG-mediated stress. Planta 2010, 232:393-407.
  • [33]Lee S, Kim H, Hwang H, Jeong Y, Na S, Woo J, Kim S: Identification of Tyrosyl-DNA phosphodiesterase as a novel DNA damage repair enzyme in Arabidopsis. Plant Physiol 2010, 154:1460-1469.
  • [34]Smeets K, Cuypers A, Lambrechts A, Semane B, Hoet P, Laere A, Vangronsveld J: Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application. Plant Physiol Biochem 2005, 43:437-444.
  • [35]Scandalios J: Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defences. Bras J Med Biol Res 2005, 38:995-1014.
  • [36]Halliwell B: Reactive species and antioxidants. redox biology is a fundamental theme of aerobic life. Plant Physiol 2006, 141:312-322.
  • [37]Yu WW, Qu LH, Guo WZ, Peng XG: Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 2003, 15(14):2854-2860.
  • [38]Yu WW, Qu LH, Guo WZ, Peng XG: Experimental determination of the extinction coefficient of CdTe, CdSe and CdS nanocrystals (vol 15, pg 2854, 2003). Chem Mater 2004, 16(3):560-570.
  • [39]Bradford M: A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem 1976, 72:248-254.
  • [40]Rubio MC, González EM, Minchin FR, Webb KJ, Arrese-Igor C, Ramos J, Becana M: Effects of water stress on antioxidant enzymes of leaves and nodules of transgenic alfalfa overexpressing superoxide dismutases. Physiol Plantarum 2002, 115:531-540.
  • [41]McCord J, Fridovich I: Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 1969, 244:6049-6055.
  • [42]Aebi HE: Catalase. In Methods of enzymatic analysis, Vol III. Edited by Bergmeyer US. Germany: Verlag Chemie; 1983:273-277.
  • [43]Shanker A, Djanaguiraman M, Sudhagar R, Chandrashekar C, Pathmanabhan G: Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram (Vigna radiata (L.) R.Wilczek. cv CO 4) roots. Plant Sci 2004, 166:1035-1043.
  • [44]Angelis KJ, Dusinská M, Collins AR: Single cell gel electrophoresis: detection of DNA damage at different levels of sensitivity. Electrophoresis 1999, 20(10):2133-2138.
  • [45]Azqueta A, Shaposhnikov S, Collins A: Detection of oxidised DNA using DNA repair enzymes . In The Comet assay in toxicology. Edited by Dhawan A, Anderson D. Royal Society of Chemistry; 2008:57-78.
  • [46]Collins A: The comet assay for DNA damage and repair. Mol Biotechnol 2004, 26:249-261.
  • [47]Chang S, Puryear J, Cairney J: A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol 1993, 11:113-116.
  • [48]Boldon F, Marie D, Brown S, Kodorosi A: Genome size and base comparison in Medicago sativa and M. truncatula species. Genome 1994, 37:264-270.
  • [49]Choi H, Kim D, Uhm T, Limpens E, Lim H, Mun J, Kalo P, Penmetsa R, Seres A, Kulikova O, Roe B, Bisseling T, Kiss G, Cook D: A sequence based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa. Genetics 2004, 166:1463-1502.
  • [50]Yang S, Gao M, Xu J, Despande S, Lin S, Roe BA, Zhum H: Alfalfa benefits from Medicago truncatula: the RCT1 gene from M. truncatula confers broad-spectrum resistance to anthracnose in alfalfa. Proc Natl Acad Sci USA 2008, 34:12164-12169.
  • [51]Kadar K, Wandrey M, Czechowski T, Gaertner T, Scheible W, Stitt M, Torres-Jerez I, Xiao Y, Redman J, Wu H, Cheuny F, Town C, Udvardi M: A community resource for high-throughput quantitative RT-PCR analysis of transcription factor gene expression in Medicago truncatula. Plant Methods 2008, 4:18. BioMed Central Full Text
  • [52]Pfaff M: A new mathematic al model for relative quantitation in real-time RT-PCR. Nucleic Acids Res 2001, 29:2002-2007.
  文献评价指标  
  下载次数:39次 浏览次数:20次