期刊论文详细信息
BMC Biotechnology
Rapid high-yield expression of a candidate influenza vaccine based on the ectodomain of M2 protein linked to flagellin in plants using viral vectors
Eugenia S. Mardanova1  Roman Y. Kotlyarov1  Victor V. Kuprianov1  Liudmila A. Stepanova3  Liudmila M. Tsybalova3  George P. Lomonosoff2  Nikolai V. Ravin1 
[1] Centre ‘Bioengineering’, Russian Academy of Sciences, Prosp. 60-letya Oktyabrya, bld 7-1, Moscow, 117312, Russia
[2] Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
[3] Research Institute of Influenza, Russian Federation Ministry of Health, 15/17 Prof. Popova str., St. Petersburg, 197376, Russia
关键词: Vaccine;    Influenza;    Flagellin;    M2 protein;    Potato virus X;    Viral vector;   
Others  :  1210244
DOI  :  10.1186/s12896-015-0164-6
 received in 2015-02-20, accepted in 2015-05-15,  发布年份 2015
PDF
【 摘 要 】

Background

The extracellular domain of matrix protein 2 (M2e) of influenza A virus is a promising target for the development of a universal vaccine against influenza because M2e sequences are highly conserved among human influenza A strains. However, native M2e is poorly immunogenic, but its immunogenicity can be increased by delivery in combination with adjuvants or carrier particles. It was previously shown that fusion of M2e to bacterial flagellin, the ligand for Toll-like receptor (TLR) 5 and powerful mucosal adjuvant, significantly increases the immunogenicity and protective capacity of M2e.

Results

In this study, we report for the first time the transient expression in plants of a recombinant protein Flg-4M comprising flagellin of Salmonella typhimurium fused to four tandem copies of the M2e peptide. The chimeric construct was expressed in Nicotiana benthamiana plants using either the self-replicating potato virus X (PVX) based vector, pA7248AMV-GFP, or the cowpea mosaic virus (CPMV)-derived expression vector, pEAQ-HT. The highest expression level up to 30 % of total soluble protein (about 1 mg/g of fresh leaf tissue) was achieved with the PVX-based expression system. Intranasal immunization of mice with purified Flg-4M protein induced high levels of M2e-specific serum antibodies and provided protection against lethal challenge with influenza virus.

Conclusions

This study confirms the usefulness of flagellin as a carrier of M2e and its relevance for the production of M2e-based candidate influenza vaccines in plants.

【 授权许可】

   
2015 Mardanova et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150605011629268.pdf 1193KB PDF download
Fig. 6. 43KB Image download
Fig. 5. 16KB Image download
Fig. 4. 21KB Image download
Fig. 3. 21KB Image download
Fig. 2. 28KB Image download
Fig. 1. 82KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

【 参考文献 】
  • [1]Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol Rev. 1992; 56:152-179.
  • [2]Fiers W, De Filette M, El Bakkouri K, Schepens B, Roose K, Schotsaert M et al.. M2e-based universal influenza A vaccine. Vaccine. 2009; 27:6280-6283.
  • [3]Fiers W, De Filette M, Birkett A, Neirynck S, Min Jou W. A “universal” human influenza A vaccine. Virus Res. 2004; 103:173-176.
  • [4]Ito T, Gorman OT, Kawaoka Y, Bean WJ, Webster RG. Evolutionary analysis of the influenza A virus M gene with comparison of the M1 and M2 proteins. J Virol. 1991; 65:5491-5498.
  • [5]Neirynck S, Deroo T, Saelens X, Vanlandschoot P, Jou WM, Fiers W. A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat Med. 1999; 5:1157-1163.
  • [6]Feng J, Zhang M, Mozdzanowska K, Zharikova D, Hoff H, Wunner W et al.. Influenza A virus infection engenders a poor antibody response against the ectodomain of matrix protein 2. Virol J. 2006; 3:102.
  • [7]Liu W, Peng Z, Liu Z, Lu Y, Ding J, Chen YH. High-epitope density in a single recombinant protein molecule of the extracellular domain of influenza A virus M2 protein significantly enhances protective immunity. Vaccine. 2004; 2:366-371.
  • [8]Mozdzanowska K, Feng J, Eid M, Kragol G, Cudic M, Otvos L et al.. Induction of influenza type A virus-specific resistance by immunization of mice with a synthetic multiple antigenic peptide vaccine that contains ectodomains of matrix protein 2. Vaccine. 2003; 21(19–20):2616-2626.
  • [9]Ravin NV, Kotlyarov RY, Mardanova ES, Kuprianov VV, Migunov AI, Stepanova LA et al.. Plant-produced recombinant influenza vaccine based on virus-like HBc particles carrying an extracellular domain of M2 protein. Biochemistry (Mosc). 2012; 77:33-40.
  • [10]Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol. 2004; 5:987-995.
  • [11]Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol. 2003; 21:335-376.
  • [12]McDonald WF, Huleatt JW, Foellmer HG, Hewitt D, Tang J, Desai P et al.. A West Nile virus recombinant protein vaccine that co-activates innate and adaptive immunity. J Infect Dis. 2007; 195:1607-1617.
  • [13]Huleatt JW, Nakaar V, Desai P, Huang Y, Hewitt D, Jacobs A et al.. Potent immunogenicity and efficacy of a universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza M2e to the TLR5 ligand flagellin. Vaccine. 2008; 26:201-214.
  • [14]Jeon SH, Ben-Yedidia T, Arnon R. Intranasal immunization with synthetic recombinant vaccine containing multiple epitopes of influenza virus. Vaccine. 2002; 20:2772-2780.
  • [15]Hong SH, Byun Y-H, Nguyen CT, Kim SY, Seong BL, Park S et al.. Intranasal administration of flagellin-adjuvanted inactivated influenza vaccine enhances mucosal immune responses to protect mice against lethal infection. Vaccine. 2012; 30:466-474.
  • [16]Liu G, Tarbet B, Song L, Reiserova L, Weaver B, Chen Y et al.. Immunogenicity and efficacy of flagellin-fused vaccine candidates targeting 2009 pandemic H1N1 influenza in mice. PLoS One. 2011; 6:e20928.
  • [17]Liu G, Song L, Reiserova L, Trivedi U, Li H, Liu X et al.. Flagellin-HA vaccines protect ferrets and mice against H5N1 highly pathogenic avian influenza virus (HPAIV) infections. Vaccine. 2012; 30:6833-6838.
  • [18]Song L, Zhang Y, Yun NE, Poussard AL, Smith JN, Smith JK et al.. Superior efficacy of a recombinant flagellin: H5N1 HA globular head vaccine is determined by the placement of the globular head within flagellin. Vaccine. 2009; 27:5875-5884.
  • [19]Wang B-Z, Xu R, Quan F-S, Kang SM, Wang L, Compans RW. Intranasal immunization with influenza VLPs incorporating membrane-anchored flagellin induces strong heterosubtypic protection. PLoS One. 2010; 5:e13972.
  • [20]Gleba Y, Klimyuk V, Marillonnet S. Viral vectors for the expression of proteins in plants. Curr Opin Biotechnol. 2007; 18:134-141.
  • [21]Lico C, Chen Q, Santi L. Vectors for production of recombinant proteins in plants. J Cell Physiol. 2008; 216:366-377.
  • [22]Thuenemann EC, Lenzi P, Love AJ, Taliansky M, Becares M, Zuniga S et al.. The use of transient expression systems for the rapid production of virus-like particles in plants. Curr Pharm Des. 2013; 19:5564-5573.
  • [23]Edelbaum O, Stein D, Holland N, Gafni Y, Livneh O, Novick D et al.. Expression of active human interferon-β in transgenic plants. J Interferon Res. 1992; 12:449-453.
  • [24]Kusnadi AR, Nikolov ZL, Howard JA. Production of recombinant proteins in transgenic plants: practical considerations. Biotechnol Bioeng. 1997; 56:473-484.
  • [25]Kapila J, De Rycke R, van Montagu M, Angenon G. An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci. 1997; 122:101-108.
  • [26]Marillonnet S, Thoeringer C, Kandzia R, Klimyuk V, Gleba Y. Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants. Nat Biotechnol. 2005; 23:718-723.
  • [27]Cañizares MC, Nicholson L, Lomonossoff GP. Use of viral vectors for vaccine production in plants. Immunol Cell Biol. 2005; 83:263-270.
  • [28]Chichester JA, Yusibov V. Plants as alternative systems for production of vaccines. Hum Vaccines. 2007; 3:146-149.
  • [29]D’Aoust MA, Couture MM, Charland N, Trepanier S, Landry N, Ors F et al.. The production of hemagglutinin-based virus-like particles in plants: a rapid, efficient and safe response to pandemic influenza. Plant Biotechnol J. 2010; 8:607-619.
  • [30]Mett V, Musiychuk K, Bi H, Farrance CE, Horsey A, Ugulava N et al.. A plant-produced influenza subunit vaccine protects ferrets against virus challenge. Viruses. 2008; 2:33-40.
  • [31]Shoji Y, Chichester JA, Jones M, Manceva SD, Damon E, Mett V. Plant-based rapid production of recombinant subunit hemagglutinin vaccines targeting H1N1 and H5N1 influenza. Hum Vaccines. 2011; 7:41-50.
  • [32]Mardanova ES, Kotliarov RIu, Ravin NV. Increased efficiency of recombinant proteins production in plants due to optimized translation of RNA of viral vector. Mol Biol (Mosk). 2009;43(3):568-71.
  • [33]Sainsbury F, Lomonossoff GP. Extremely high-level and rapid transient protein production in plants without the use of viral replication. Plant Physiol. 2008; 148:1212-1218.
  • [34]Sainsbury F, Thuenemann EC, Lomonossoff GP. pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnol J. 2009; 7:682-693.
  • [35]De Filette M, Fiers W, Martens W, Birkett A, Ramne A, Löwenadler B et al.. Improved design and intranasal delivery of an M2e-based human influenza A vaccine. Vaccine. 2006; 24:6597-6601.
  • [36]Blokhina EA, Kuprianov VV, Stepanova LA, Tsybalova LM, Kiselev OI, Ravin NV et al.. A molecular assembly system for presentation of antigens on the surface of HBc virus-like particles. Virology. 2013; 435:293-300.
  • [37]Matić S, Masenga V, Poli A, Rinaldi R, Milne RG, Vecchiati M et al.. Comparative analysis of recombinant Human Papillomavirus 8 L1 production in plants by a variety of expression systems and purification methods. Plant Biotechnol J. 2012; 10:410-421.
  • [38]Girard A, Saron W, Bergeron-Sandoval LP, Sarhan F, Archambault D. Flagellin produced in plants is a potent adjuvant for oral immunization. Vaccine. 2011; 29:6695-6703.
  • [39]Stepanova L, Kotlyarov R, Kovaleva A, Potapchuk M, Korotkov A, Sergeeva M, et al. Protection against multiple influenza A virus strains induced by candidate recombinant vaccine based on heterologous M2e peptides linked to flagellin. PLoS One. 2015;10(3):e0119520.
  • [40]Matić S, Rinaldi R, Masenga V, Noris E. Efficient production of chimeric human papillomavirus 16 L1 protein bearing the M2e influenza epitope in Nicotiana benthamiana plants. BMC Biotechnol. 2011; 11:106.
  • [41]Petukhova NV, Gasanova TV, Stepanova LA, Rusova OA, Potapchuk MV, Korotkov AV et al.. Immunogenicity and protective efficacy of candidate universal influenza A nanovaccines produced in plants by tobacco mosaic virus-based vectors. Curr Pharm Des. 2013; 19:5587-5600.
  • [42]Chiba M, Reed JC, Prokhnevsky AI, Chapman EJ, Mawassi M, Koonin EV et al.. Diverse suppressors of RNA silencing enhance agroinfection by a viral replicon. Virology. 2006; 346:7-14.
  文献评价指标  
  下载次数:39次 浏览次数:14次