期刊论文详细信息
BMC Cancer
Suppression of thymosin β10 increases cell migration and metastasis of cholangiocarcinoma
Sirinapa Sribenja2  Kanlayanee Sawanyawisuth1  Ratthaphol Kraiklang1  Chaisiri Wongkham1  Kulthida Vaeteewoottacharn1  Sumalee Obchoei1  Qizhi Yao2  Sopit Wongkham1  Changyi Chen2 
[1] Department of Biochemistry, Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
[2] Molecular Surgeon Research Center, Division of Surgical Research, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
关键词: MMPs;    ERK1/2;    Snail;    Cancer metastasis;    Cell migration;    Cholangiocarcinoma;    Thymosin β10;   
Others  :  1079561
DOI  :  10.1186/1471-2407-13-430
 received in 2013-05-15, accepted in 2013-09-17,  发布年份 2013
PDF
【 摘 要 】

Background

Thymosin β10 (Tβ10) expression is associated with malignant phenotypes in many cancers. However, the role and mechanisms of Tβ10 in liver fluke-associated cholangiocarcinoma (CCA) are not fully understood. In this study, we investigated the expression of Tβ10 in CCA tumor tissues and cell lines as well as molecular mechanisms of Tβ10 in tumor metastasis of CCA cell lines.

Methods

Tβ10 expression was determined by real time RT-PCR or immunocytochemistry. Tβ10 silence or overexpression in CCA cells was achieved using gene delivery techniques. Cell migration was assessed using modified Boyden chamber and wound healing assay. The effect of silencing Tβ10 on CCA tumor metastasis was determined in nude mice. Phosphorylation of ERK1/2 and the expression of EGR1, Snail and matrix metalloproteinases (MMPs) were studied.

Results

Ten pairs of CCA tissues (primary and metastatic tumors) and 5 CCA cell lines were studied. With real time RT-PCR and immunostaining analysis, Tβ10 was highly expressed in primary tumors of CCA; while it was relatively low in the metastatic tumors. Five CCA cell lines showed differential expression levels of Tβ10. Silence of Tβ10 significantly increased cell migration, invasion and wound healing of CCA cells in vitro; reversely, overexpression of Tβ10 reduced cell migration compared with control cells (P<0.05). In addition, silence of Tβ10 in CCA cells increased liver metastasis in a nude mouse model of CCA implantation into the spleen. Furthermore, silence of Tβ10 activated ERK1/2 and increased the expression of Snail and MMPs in CCA cell lines. Ras-GTPase inhibitor, FPT inhibitor III, effectively blocked Tβ10 silence-associated ERK1/2 activation, Snail expression and cell migration.

Conclusions

Low expression of Tβ10 is associated with metastatic phenotype of CCA in vitro and in vivo, which may be mediated by the activation of Ras, ERK1/2 and upregulation of Snail and MMPs. This study suggests a new molecular pathway of CCA pathogenesis and a novel strategy to treat or prevent CCA metastasis.

【 授权许可】

   
2013 Sribenja et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20141202185427408.pdf 3636KB PDF download
Figure 7. 35KB Image download
Figure 6. 91KB Image download
Figure 5. 100KB Image download
Figure 4. 72KB Image download
Figure 3. 88KB Image download
Figure 2. 35KB Image download
Figure 1. 52KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Shaib Y, El-Serag HB: The epidemiology of cholangiocarcinoma. Semin Liver Dis 2004, 24:115-125.
  • [2]Sripa B, Kaewkes S, Sithithaworn P, Mairiang E, Laha T, Smout M, Pairojkul C, Bhudhisawasdi V, Tesana S, Thinkamrop B, et al.: Liver fluke induces cholangiocarcinoma. PLoS Med 2007, 4:e201.
  • [3]Khan SA, Taylor-Robinson SD, Toledano MB, Beck A, Elliott P, Thomas HC: Changing international trends in mortality rates for liver, biliary and pancreatic tumours. J Hepatol 2002, 37:806-813.
  • [4]Patel T: Worldwide trends in mortality from biliary tract malignancies. BMC Cancer 2002, 2:10. BioMed Central Full Text
  • [5]Vatanasapt V, Uttaravichien T, Mairiang EO, Pairojkul C, Chartbanchachai W, Haswell-Elkins M: Cholangiocarcinoma in north-east Thailand. Lancet 1990, 335:116-117.
  • [6]Burak K, Angulo P, Pasha TM, Egan K, Petz J, Lindor KD: Incidence and risk factors for cholangiocarcinoma in primary sclerosing cholangitis. Am J Gastroenterol 2004, 99:523-526.
  • [7]Anderson CD, Pinson CW, Berlin J, Chari RS: Diagnosis and treatment of cholangiocarcinoma. Oncologist 2004, 9:43-57.
  • [8]Kawarada Y, Yamagiwa K, Das BC: Analysis of the relationships between clinicopathologic factors and survival time in intrahepatic cholangiocarcinoma. Am J Surg 2002, 183:679-685.
  • [9]Sawanyawisuth K, Wongkham C, Araki N, Zhao Q, Riggins GJ, Wongkham S: Serial analysis of gene expression reveals promising therapeutic targets for liver fluke-associated cholangiocarcinoma. Asian Pac J Cancer Prev 2012, 13:89-93.
  • [10]Goldstein AL: History of the discovery of the thymosins. Ann N Y Acad Sci 2007, 1112:1-13.
  • [11]Goldstein AL, Hannappel E, Sosne G, Kleinman HK: Thymosin beta(4): a multi-functional regenerative peptide. Basic properties and clinical applications. Expert Opin Biol Ther 2012, 12:37-51.
  • [12]Hannappel E: {beta}-Thymosins. Ann N Y Acad Sci 2007, 1112:21-37.
  • [13]Huff T, Muller CS, Otto AM, Netzker R, Hannappel E: Beta-Thymosins, small acidic peptides with multiple functions. Int J Biochem Cell Biol 2001, 33:205-220.
  • [14]Chen C, Li M, Yang H, Chai H, Fisher W, Yao Q: Roles of thymosins in cancers and other organ systems. World J Surg 2005, 29:264-270.
  • [15]Sribenja S, Li M, Wongkham S, Wongkham C, Yao Q, Chen C: Advances in thymosin beta10 research: differential expression, molecular mechanisms, and clinical implications in cancer and other conditions. Cancer Invest 2009, 27:1016-1022.
  • [16]Sribenja S, Wongkham S, Wongkham C, Yao Q, Chen C: Roles and mechanisms of beta-thymosins in cell migration and cancer metastasis: an update. Cancer Invest 2012, 31:103-110.
  • [17]Califano D, Monaco C, Santelli G, Giuliano A, Veronese ML, Berlingieri MT, de Franciscis V, Berger N, Trapasso F, Santoro M, et al.: Thymosin beta-10 gene overexpression correlated with the highly malignant neoplastic phenotype of transformed thyroid cells in vivo and in vitro. Cancer Res 1998, 58:823-828.
  • [18]Takano T, Hasegawa Y, Miyauchi A, Matsuzuka F, Yoshida H, Kuma K, Amino N: Quantitative analysis of thymosin beta-10 messenger RNA in thyroid carcinomas. Jpn J Clin Oncol 2002, 32:229-232.
  • [19]Weterman MA, van Muijen GN, Ruiter DJ, Bloemers HP: Thymosin beta-10 expression in melanoma cell lines and melanocytic lesions: a new progression marker for human cutaneous melanoma. Int J Cancer 1993, 53:278-284.
  • [20]Huang L, Zheng M, Zhou QM, Zhang MY, Jia WH, Yun JP, Wang HY: Identification of a gene-expression signature for predicting lymph node metastasis in patients with early stage cervical carcinoma. Cancer 2011, 117:3363-3373.
  • [21]Sripa B, Leungwattanawanit S, Nitta T, Wongkham C, Bhudhisawasdi V, Puapairoj A, Sripa C, Miwa M: Establishment and characterization of an opisthorchiasis-associated cholangiocarcinoma cell line (KKU-100). World J Gastroenterol 2005, 11:3392-3397.
  • [22]Obchoei S, Weakley SM, Wongkham S, Wongkham C, Sawanyawisuth K, Yao Q, Chen C: Cyclophilin A enhances cell proliferation and tumor growth of liver fluke-associated cholangiocarcinoma. Mol Cancer 2011, 10:102. BioMed Central Full Text
  • [23]Li M, Zhang Y, Zhai Q, Feurino LW, Fisher WE, Chen C, Yao Q: Thymosin beta-10 is aberrantly expressed in pancreatic cancer and induces JNK activation. Cancer Invest 2009, 27:251-256.
  • [24]Lee SH, Son MJ, Oh SH, Rho SB, Park K, Kim YJ, Park MS, Lee JH: Thymosin {beta}(10) inhibits angiogenesis and tumor growth by interfering with Ras function. Cancer Res 2005, 65:137-148.
  • [25]Gineitis D, Treisman R: Differential usage of signal transduction pathways defines two types of serum response factor target gene. J Biol Chem 2001, 276:24531-24539.
  • [26]Guha M, O’Connell MA, Pawlinski R, Hollis A, McGovern P, Yan SF, Stern D, Mackman N: Lipopolysaccharide activation of the MEK-ERK1/2 pathway in human monocytic cells mediates tissue factor and tumor necrosis factor alpha expression by inducing Elk-1 phosphorylation and Egr-1 expression. Blood 2001, 98:1429-1439.
  • [27]Shin SY, Lee JH, Min B, Lee YH: The translation inhibitor anisomycin induces Elk-1-mediated transcriptional activation of egr-1 through multiple mitogen-activated protein kinase pathways. Exp Mol Med 2006, 38:677-685.
  • [28]Cagnol S, Rivard N: Oncogenic KRAS and BRAF activation of the MEK/ERK signaling pathway promotes expression of dual-specificity phosphatase 4 (DUSP4/MKP2) resulting in nuclear ERK1/2 inhibition. Oncogene 2013, 32:564-576.
  • [29]Deryugina EI, Quigley JP: Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 2006, 25:9-34.
  • [30]Gu Y, Wang C, Wang Y, Qiu X, Wang E: Expression of thymosin beta10 and its role in non-small cell lung cancer. Hum Pathol 2009, 40:117-124.
  • [31]Liu CR, Ma CS, Ning JY, You JF, Liao SL, Zheng J: Differential thymosin beta 10 expression levels and actin filament organization in tumor cell lines with different metastatic potential. Chin Med J (Engl) 2004, 117:213-218.
  • [32]Santelli G, Califano D, Chiappetta G, Vento MT, Bartoli PC, Zullo F, Trapasso F, Viglietto G, Fusco A: Thymosin beta-10 gene overexpression is a general event in human carcinogenesis. Am J Pathol 1999, 155:799-804.
  • [33]van Groningen JJ, Cornelissen IM, van Muijen GN, Bloemers HP, Swart GW: Simultaneous suppression of progression marker genes in the highly malignant human melanoma cell line BLM after transfection with the adenovirus-5 E1A gene. Biochem Biophys Res Commun 1996, 225:808-816.
  • [34]Verghese-Nikolakaki S, Apostolikas N, Livaniou E, Ithakissios DS, Evangelatos GP: Preliminary findings on the expression of thymosin beta-10 in human breast cancer. Br J Cancer 1996, 74:1441-1444.
  • [35]Chiappetta G, Pentimalli F, Monaco M, Fedele M, Pasquinelli R, Pierantoni GM, Ribecco MT, Santelli G, Califano D, Pezzullo L, Fusco A: Thymosin beta-10 gene expression as a possible tool in diagnosis of thyroid neoplasias. Oncol Rep 2004, 12:239-243.
  • [36]Feher LZ, Pocsay G, Krenacs L, Zvara A, Bagdi E, Pocsay R, Lukacs G, Gyory F, Gazdag A, Tarko E, Puskas LG: Amplification of thymosin beta 10 and AKAP13 genes in metastatic and aggressive papillary thyroid carcinomas. Pathol Oncol Res 2012, 18:449-458.
  • [37]Hardesty WM, Kelley MC, Mi D, Low RL, Caprioli RM: Protein signatures for survival and recurrence in metastatic melanoma. J Proteomics 2011, 74:1002-1014.
  • [38]Mu H, Ohashi R, Yang H, Wang X, Li M, Lin P, Yao Q, Chen C: Thymosin beta10 inhibits cell migration and capillary-like tube formation of human coronary artery endothelial cells. Cell Motil Cytoskeleton 2006, 63:222-230.
  • [39]Wang AG, Yoon SY, Oh JH, Jeon YJ, Kim M, Kim JM, Byun SS, Yang JO, Kim JH, Kim DG, et al.: Identification of intrahepatic cholangiocarcinoma related genes by comparison with normal liver tissues using expressed sequence tags. Biochem Biophys Res Commun 2006, 345:1022-1032.
  • [40]Bravo-Cordero JJ, Hodgson L, Condeelis J: Directed cell invasion and migration during metastasis. Curr Opin Cell Biol 2012, 24:277-283.
  • [41]Woodhouse EC, Chuaqui RF, Liotta LA: General mechanisms of metastaisis. Cancer Suppl 1997, 80:1529-2537.
  • [42]Kim YC, Kim BG, Lee JH: Thymosin beta(10) expression driven by the human TERT promoter induces ovarian cancer-specific apoptosis through ROS production. PLoS One 2012, 7:e35399.
  • [43]Lee SH, Zhang W, Choi JJ, Cho YS, Oh SH, Kim JW, Hu L, Xu J, Liu J, Lee JH: Overexpression of the thymosin beta-10 gene in human ovarian cancer cells disrupts F-actin stress fiber and leads to apoptosis. Oncogene 2001, 20:6700-6706.
  • [44]Ong CK, Subimerb C, Pairojkul C, Wongkham S, Cutcutache I, Yu W, McPherson JR, Allen GE, Ng CC, Wong BH, et al.: Exome sequencing of liver fluke-associated cholangiocarcinoma. Nat Genet 2012, 44:690-693.
  • [45]Longley DB, Harkin DP, Johnston PG: 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 2003, 3:330-338.
  • [46]Huang C, Jacobson K, Schaller MD: MAP kinases and cell migration. J Cell Sci 2004, 117:4619-4628.
  • [47]Reddy KB, Nabha SM, Atanaskova N: Role of MAP kinase in tumor progression and invasion. Cancer Metastasis Rev 2003, 22:395-403.
  • [48]Hunger-Glaser I, Salazar EP, Sinnett-Smith J, Rozengurt E: Bombesin, lysophosphatidic acid, and epidermal growth factor rapidly stimulate focal adhesion kinase phosphorylation at Ser-910: requirement for ERK activation. J Biol Chem 2003, 278:22631-22643.
  • [49]Cheng JC, Chang HM, Leung PC: Egr-1 mediates epidermal growth factor-induced downregulation of E-cadherin expression via Slug in human ovarian cancer cells. Oncogene 2013, 32:1041-1049.
  • [50]Grotegut S, von Schweinitz D, Christofori G, Lehembre F: Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO J 2006, 25:3534-3545.
  • [51]Mikami S, Katsube K, Oya M, Ishida M, Kosaka T, Mizuno R, Mukai M, Okada Y: Expression of Snail and Slug in renal cell carcinoma: E-cadherin repressor Snail is associated with cancer invasion and prognosis. Lab Invest 2011, 91:1443-1458.
  • [52]Merikallio H, Turpeenniemi-Hujanen T, Pääkkö P, Mäkitaro R, Riitta K, Salo S, Salo T, Harju T, Soini Y: Snail promotes an invasive phenotype in lung carcinoma. Respir Res 2012, 13:104. BioMed Central Full Text
  • [53]Jin H, Yu Y, Zhang T, Zhou X, Zhou J, Jia L, Wu Y, Zhou BP, Feng Y: Snail is critical for tumor growth and metastasis of ovarian carcinoma. Int J Cancer 2010, 126:2102-2111.
  • [54]Shin NR, Jeong EH, Choi CI, Moon HJ, Kwon CH, Chu IS, Kim GH, Jeon TY, Kim DH, Lee JH, Park Do Y: Overexpression of Snail is associated with lymph node metastasis and poor prognosis in patients with gastric cancer. BMC Cancer 2012, 12:521. BioMed Central Full Text
  • [55]de Herreros AG, Peiro S, Nassour M, Savagner P: Snail family regulation and epithelial mesenchymal transitions in breast cancer progression. J Mammary Gland Biol Neoplasia 2010, 15:135-147.
  • [56]Peiro S, Escriva M, Puig I, Barbera MJ, Dave N, Herranz N, Larriba MJ, Takkunen M, Franci C, Munoz A, et al.: Snail1 transcriptional repressor binds to its own promoter and controls its expression. Nucleic Acids Res 2006, 34:2077-2084.
  文献评价指标  
  下载次数:77次 浏览次数:13次