期刊论文详细信息
Behavioral and Brain Functions
DRD2 and DRD4 genes related to cognitive deficits in HIV-infected adults who abuse alcohol
Jean Lud Cadet2  Rhonda Rosenberg1  Jessy G. Devieux1  Karina Villalba1 
[1]Department of Health Promotion and Disease Prevention, Robert Stempel College of Public Health and Social Work, Florida International University, Biscayne Bay Campus, 3000 N.E, 151 Street ACI #260, North Miami 33181, FL, USA
[2]NIDA Intramural Program, Molecular Neuropsychiatry Research Branch, Baltimore, MD, USA
关键词: Alcohol abuse;    HIV;    DRD4 gene;    DRD2 gene;    Dopamine;   
Others  :  1222817
DOI  :  10.1186/s12993-015-0072-x
 received in 2015-05-15, accepted in 2015-08-17,  发布年份 2015
PDF
【 摘 要 】

Background

HIV-infected individuals continue toexperience neurocognitive deterioration despite virologically successful treatments. The causes of neurocognitive impairment are still unclear. However, several factors have been suggested including the role of genetics. There is evidence suggesting that neurocognitive impairment is heritable and individual differences in cognition are strongly driven by genetic variations. The contribution of genetic variants affecting the metabolism and activity of dopamine may influence these individual differences.

Methods

The present study explored the relationship between two candidate genes (DRD4 and DRD2) and neurocognitive performance in HIV-infected adults. A total of 267 HIV-infected adults were genotyped for polymorphisms, DRD4 48 bp-variable number tandem repeat (VNTR), DRD2 rs6277 and ANKK1 rs1800497. The Short Category (SCT), Color Trail (CTT) and Rey-Osterrieth Complex Figure Tests (ROCT) were used to measure executive function and memory.

Results

Results showed significant associations with the SNP rs6277 and impaired executive function (odds ratio = 3.3, 95 % CI 1.2–2.6; p = 0.004) and cognitive flexibility (odds ratio = 1.6, 95 % CI 2.0–5.7; p = 0.001). The results were further stratified by race and sex and significant results were seen in males (odds ratio = 3.5, 95 % CI 1.5–5.5; p = 0.008) and in African Americans (odds ratio = 3.1, 95 % CI 2.3–3.5; p = 0.01). Also, DRD4 VNTR 7-allele was significantly associated with executive dysfunction.

Conclusion

The study shows that genetically determined differences in the SNP rs6277 DRD2 gene and DRD4 48 bp VNTR may be risk factors for deficits in executive function and cognitive flexibility.

【 授权许可】

   
2015 Villalba et al.

【 预 览 】
附件列表
Files Size Format View
20150828011453763.pdf 1092KB PDF download
【 参考文献 】
  • [1]CDC—Estimates of New HIV Infections in the United States _ Statistics and Surveillance—Statistics Center—HIV_AIDS. 2011
  • [2]Clifford DB, Ances BM. HIV-associated neurocognitive disorder. Lancet Infect Dis. 2013; 13(11):976-986.
  • [3]Bottiggi KA, Chang JJ, Schmitt FA, Avison MJ, Mootoor Y, Nath. The HIV Dementia Scale: predictive power in mild dementia and HAART. J Neurol Sci. 2007; 260(1–2):11-15.
  • [4]Gray F, Chretien F, Lorin de la Grandmaison G, Force G, Keohane C. Neuropathology and neurodegeneration in human immunodeficiency virus infection. Pathogenesis of HIV-induced lesions of the brain, correlations with HIV-associated disorders and modifications according to treatments. Clin Neuropathol. 2001; 20(4):146-155.
  • [5]Barnes J, Nandam LS, O’Connell RG, Bellgrove MA. The molecular genetics of executive function: role of monoamine system genes. Biol Psychiatry. 2011; 69(12):127-143.
  • [6]Frank MJ, Fossella JA. Neurogenetics and pharmacology of learning, motivation, and cognition. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2011; 36(1):133-152.
  • [7]Friedman NP, Young SE, Defries JC, Corley RP, Hewitt JK. Individual differences in executive functions are almost entirely genetic in origin. J Exp Psychol Gen. 2008; 137(2):201-225.
  • [8]Haworth CM, Luciano M, Martin NG, de Geus EJ, van Beijsterveldt CE, Bartels M, Posthuma D, Boomsma DI, Davis OS, Kovas Y, Corley RP, Defries JC, Hewitt JK, Olson RK, McGue M, Thompson LA, Hart SA, Petrill SA, Lubinski D, Plomin R. The heritability of general cognitive ability increases linearly from childhood to young adulthood. Mol Psychiatry. 2010; 15(11):1112-1120.
  • [9]Bosia MA, Pirovano A, Ermoli E, Marino E, Bramanti P, Smeraldi E, Cavallaro R. HTTLPR functional polymorphism in schizophrenia: executive functions vs. sustained attention dissociation. Prog Neuropsychopharmacol Biol Psychiatry. 2010; 34(1):81-85.
  • [10]Kramer UM, Schule R, Cunillera T, Schols L, Marco-Pallares J, Cucurell D, Camara E, Rodriguez-Fornells A, Munte TF. ADHD candidate gene (DRD4 exon III) affects inhibitory control in a healthy sample. BMC Neurosci. 2009; 10:150-161. BioMed Central Full Text
  • [11]Reuter M, Kuepper Y, Hennig J. Association between a polymorphism in the promoter region of the TPH2 gene and the personality trait of harm avoidance. Int J Neuropsychopharmacol. 2007; 10(3):401-404.
  • [12]Sarosi AG, Balogh G, Domotor E, Szekely A, Hejjas K, Sasvari-Szekely M, Faludi G. Association of the STin2 polymorphism of the serotonin transporter gene with a neurocognitive endophenotype in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2008; 32(7):1667-1672.
  • [13]Van Tol Hubert HM. The dopamine D receptor: one decade of research. Eur J Pharmacol. 2000; 405:25.
  • [14]Chinta SJ, Andersen JK. Dopaminergic neurons. Int J Biochem Cell Biol. 2005; 37(5):942-946.
  • [15]Cadet JL, McCoy MT, Beauvais G, Cai NS. Dopamine D1 receptors, regulation of gene expression in the brain, and neurodegeneration. CNS Neurol Disord: Drug Targets. 2010; 9(5):526-538.
  • [16]Floresco SB. Prefrontal dopamine and behavioral flexibility: shifting from an “inverted-U” toward a family of functions. Front Neurosci. 2013; 7:62.
  • [17]Robbins TW, Arnsten AF. The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. Annu Rev Neurosci. 2009; 32:267-287.
  • [18]Kehagia AA, Murray GK, Robbins TW. Learning and cognitive flexibility: frontostriatal function and monoaminergic modulation. Curr Opin Neurobiol. 2010; 20(2):199-204.
  • [19]Hung CWBCE, Van TH. Polymorphisms in dopamine receptors: what do they tell us? Eur J Pharmacol. 2000; 410:183.
  • [20]Mitaki SI, Maniwa K, Yamasaki M, Nagai A, Nabika T, Yamaguchi S. Impact of five SNPs in dopamine-related genes on executive function. Acta Neurol Scand. 2013; 127(1):70-76.
  • [21]Smith L, Watson M, Gates S, Ball D, Foxcroft D. Meta-analysis of the association of the Taq1A polymorphism with the risk of alcohol dependency: a HuGE gene-disease association review. Am J Epidemiol. 2008; 167(2):125-138.
  • [22]Neville MJ, Johnstone EC, Walton RT. Identification and characterization of ANKK1: a novel kinase gene closely linked to DRD2 on chromosome band 11q23.1. Hum Mutat. 2004; 23(6):540-545.
  • [23]He M, Yan H, Duan ZX, Qu W, Gong HY, Fan ZL, Kang JY, Li BC, Wang JM. Genetic distribution and association analysis of DRD2 gene polymorphisms with major depressive disorder in the Chinese Han population. Int J Clin Exp Pathol. 2013; 15(6):1142-1149.
  • [24]Stelzel C, Basten U, Montag C, Reuter M, Fiebach CJ. Frontostriatal involvement in task switching depends on genetic differences in d2 receptor density. J Neurosci. 2010; 30(42):14205-14212.
  • [25]Berman SMNE. Reduced visuospatial performance in children with the D2 dopamine receptor A1 allele. Behav Genet. 1995; 25(1):45-58.
  • [26]Bellgrove M, Lowe N, Kirley A, Robertson IH, Gill M. DRD4 gene variants and sustained attention in attention deficit hyperactivity disorder (ADHD): effects of associated alleles at the VNTR and -521 SNP. Am J Med Genet Part B Neuropsychiatric Genet Off Publ Int Soc of Psychiatric Genet. 2005; 136B(1):81-86.
  • [27]Bellgrove M, Ziarih G, Robertson M, Ian H. The cognitive genetics of attention deficit hyperactivity disorder (ADHD): sustained attention as a candidate phenotype. Cortex. 2006; 42(6):838-845.
  • [28]Ding YC, Chi HC, Grady DL, Morishima A, Kidd JR, Kidd KK. Evidence of positive selection acting at the human dopamine receptor D4 gene locus. Proc Natl Acad Sci USA. 2002; 99(1):309-314.
  • [29]Van Tol HH, Caren MW, Guan HC, Ohara K, Bunzow JR, Civelli O, Kennedy J, Seeman P, Niznik HB, Jovanovic V. Multiple dopamine D4 receptor variants in the human population. Nature. 1992; 358(6382):149-152.
  • [30]Lichter JB, Kennedy JL, Van Tol HH, Kidd KK, Livak KJ. A hypervariable segment in the human dopamine receptor D4 (DRD4) gene. Hum Mol Genet. 1993; 2(6):767-773.
  • [31]Schoots O, Van Tol HH. The human dopamine D4 receptor repeat sequences modulate expression. Pharmacogenomics J. 2003; 3(6):343-348.
  • [32]Eisenberg D, Modi M, Beauchemin J, Dang D, Lisman SA, Lum JK, Wilson DS. Examining impulsivity as an endophenotype using a behavioral approach: a DRD2 TaqI A and DRD4 48-bp VNTR association study. Behav Brain Funct BBF. 2007; 3:2. BioMed Central Full Text
  • [33]Foley JM, Wright MJ, Gooding AL, Ettenhofer M, Kim M, Choi M, Castellon SA, Sadek J, Heaton RK, van Gorp WG, Marcotte TD, Hinkin CH. Operationalization of the updated diagnostic algorithm for classifying HIV-related cognitive impairment and dementia. Int Psychogeriatr. 2011; 23(5):835-843.
  • [34]Simioni S, Annoni JM, Rimbault A, Bourquin I, Schiffer V, Calmy A, Chave JP, Giacobini E, Hirschel B, Du Pasquier RA. Cognitive dysfunction in HIV patients despite long-standing suppression of viremia. AIDS. 2010; 24(9):1243-1250.
  • [35]Enge SF, Lesch KP, Reif A, Strobel A. Serotonergic modulation in executive functioning: linking genetic variations to working memory performance. Neuropsychologia. 2011; 49(13):3776-3785.
  • [36]Li T, Deng H, Cai G, Liu J, Liu X, Wang R, Xiang X, Zhao J, Murray RM, Sham PC, Collier DA. Association analysis of the dopamine D4 gene exon III VNTR and heroin abuse in Chinese subjects. Mol Psychiatry. 1997; 2(5):413-416.
  • [37]Trauss E, Sherman E, Spreen O. A compendium of neuropsychological tests: administration, norms, and commentary. 3rd ed. Oxford University Press, New York; 2006.
  • [38]Deckersbach T, Henin A, Mataix-Cols D, Otto W, Wilhelm S, Rauch L, Scott BL, Jenike M. Reliability and validity of a scoring system for measuring organizational approach in the complex figure test. J Clin Exp Neuropsychol. 2000; 22(5):641-648.
  • [39]Delia F (1994) Louis SP, Uchiyama Lyons Craig, and White Travis. Color Trails Test. Psychological Assessment Resources Inc
  • [40]Wetzel L, Boll T (1987) Short category test, booklet format. Western Psychological Services, Los Angeles
  • [41]Sobell LC, Sobell MB. Alcohol timeline followback users’ manual. Addiction Research Foundation, Toronto Canada; 1995.
  • [42]Maisto S, Conigliaro J, McNeil M, Kraemer K, Kelley M. An empirical investigation of the factor structure of the AUDIT. Psych Assess. 2000; 12(3):346-353.
  • [43]Popp J, Leucht S, Heres S, Steimer W. DRD4 48 bp VNTR but not 5-HT 2C Cys23Ser receptor polymorphism is related to antipsychotic-induced weight gain. Pharmacogenomics J. 2009; 9(1):71-77.
  • [44]Zalsman G, Frisch A, Lev-Ran S, Martin A, Michaelovsky E, Bensason D, Gothelf D, Nahshoni E, Tyano S, Weizman A. DRD4 exon III polymorphism and response to risperidone in Israeli adolescents with schizophrenia: a pilot pharmacogenetic study. Eur Neuropsychopharmacol. 2003; 13(3):183-185.
  • [45]Antinori AA, Becker JT, Brew BJ, Byrd DA, Cherner M, Clifford DB, Cinque P, Epstein LG, Goodkin K, Gisslen M, Grant I, Heaton RK, Joseph J, Marder K, Marra CM, McArthur JC, Nunn MP, Pulliam L, Robertson R, Sacktor N, Valcour V, Wojna VE. Updated research nosology for HIV-associated neurocognitive disorders. Neurology. 2007; 69(18):1789-1799.
  • [46]Fama RR, Nichols BN, Pfefferbaum A, Sullivan EV. Working and episodic memory in HIV infection, alcoholism, and their comorbidity: baseline and 1-year follow-up examinations. Alcohol Clin Exp Res. 2009; 33(10):1815-1824.
  • [47]Matthews LJ, Butler PM. Novelty-seeking DRD4 polymorphisms are associated with human migration distance out-of-Africa after controlling for neutral population gene structure. Am J Phys Anthropol. 2011; 145(3):382-389.
  • [48]Roman T, Almeida S, Hutz M. Lack of association of the dopamine D4 receptor gene polymorphism with alcoholism in a Brazilian population. Addict Biol. 1999; 4:203-207.
  • [49]Lindenberger U, Nagel IE, Chicherio C, Li SC, Heekeren HR, Backman L. Age-related decline in brain resources modulates genetic effects on cognitive functioning. Front Neurosci. 2008; 2(2):234-244.
  • [50]Rodriguez-Jimenez R, Jimenez-Arriero MA, Ponce G, Bagney A, Aragues M, Palomo T. Performance in the Wisconsin Card Sorting Test and the C957T polymorphism of the DRD2 gene in healthy volunteers. Neuropsychobiology. 2007; 54(3):166-170.
  • [51]Xu H, Kellendonk CB, Simpson EH, Keilp JG, Bruder GE, Polan HJ. DRD2 C957T polymorphism interacts with the COMT Val158Met polymorphism in human working memory ability. Schizophr Res. 2007; 90(1–3):104-107.
  • [52]Bolton JL, Marioni RE, Deary IJ, Harris SE, Stewart MC, Murray GD. Association between polymorphisms of the dopamine receptor D2 and catechol-O-methyl transferase genes and cognitive function. Behav Genet. 2010; 40(5):630-638.
  • [53]Colzato LS, van den Wildenburg WP, Van der Does AJ, Hommel B. Genetic markers of striatal dopamine predict individual differences in dysfunctional, but not functional impulsivity. Neuroscience. 2010; 170(3):782-788.
  • [54]Felten AM, Kranczioch C, Markett S, Walter NT, Reuter M. The DRD2 C957T polymorphism and the attentional blink—a genetic association study. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol. 2013; 23(8):941-947.
  • [55]Hirvonen MM, Lumme V, Hirvonen J, Pesonen U, Nagren K, Vahlberg T, Scheinin H, Hietala J. C957T polymorphism of the human dopamine D2 receptor gene predicts extrastriatal dopamine receptor availability in vivo. Prog Neuropsychopharmacol Biol Psychiatry. 2009; 33(4):630-636.
  • [56]Hirvonen MM, Laakso A, Nagren K, Rinne JO, Pohjalainen T, Hietala J. C957T polymorphism of dopamine D2 receptor gene affects striatal DRD2 in vivo availability by changing the receptor affinity. Synapse. 2009; 63(10):907-912.
  • [57]Frank MJ, Haughey HM, Curran T, Hutchison KE. Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learning. Proc Natl Acad Sci USA. 2007; 104(41):16311-16316.
  • [58]Davis C, Kaplan AS, Carter J, Reid C, Curtis C, Patte K, Hwang R, Kennedy JL. Reward sensitivity and the D2 dopamine receptor gene: a case-control study of binge eating disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2008; 32(3):620-628.
  • [59]Gelernter J, Weiss R, Brady K, Panhuysen C, Yang BZ, Kranzler HR, Farrer L. Haplotype spanning TTC12 and ANKK1, flanked by the DRD2 and NCAM1 loci, is strongly associated to nicotine dependence in two distinct American populations. Hum Mol Genet. 2006; 15(24):3498-3507.
  • [60]Hill SY, Zezza N, Thalamuthu A, Weeks DE, Matthews AG, Mukhopadhyay I. Dopaminergic mutations: within-family association and linkage in multiplex alcohol dependence families. Am J Med Genet B Neuropsychiatr Genet. 2008; 147B(4):517-526.
  • [61]Ponce G, Jiménez-Arriero MA, Rodríguez-Jiménez R, Aragüés M, Martín-Suñé N, Huertas E, Palomo T. DRD2 and ANKK1 genotype in alcohol-dependent patients with psychopathic traits: association and interaction study. Br J Psychiatry J Mental Sci. 2008; 193(2):121-125.
  • [62]Jacobsen LK, Mencl WE, Gelernter J. C957T polymorphism of the dopamine D2 receptor gene modulates the effect of nicotine on working memory performance and cortical processing efficiency. Psychopharmacology. 2006; 188(4):530-540.
  • [63]Lerman C, Wileyto EP, Epstein LH, Rukstalis M, Patterson F, Kaufmann V, Restine S, Hawk L, Niaura R, Berrettini W. Role of functional genetic variation in the dopamine D2 receptor (DRD2) in response to bupropion and nicotine replacement therapy for tobacco dependence: results of two randomized clinical trials. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2006; 31(1):231-242.
  • [64]Zai CC, De Luca V, Müller DJ, King N, Zai GC, Remington G, Meltzer HY, Lieberman JA, Potkin SG, Kennedy JL. Association study of tardive dyskinesia and twelve DRD2 polymorphisms in schizophrenia patients. Int J Neuropsychopharmacol. 2007; 10(5):639-651.
  • [65]Monakhov M, Abramova L, Kaleda V, Karpov V. Association study of three polymorphisms in the dopamine D2 receptor gene and schizophrenia in the Russian population. Schizophr Res. 2008; 100:302.
  • [66]Ponce G, Perez-Gonzalez R, Aragues M, Palomo T, Rodriguez-Jimenez R, Jimenez-Arriero MA. The ANKK1 kinase gene and psychiatric disorders. Neurotox Res. 2009; 16(1):50-59.
  • [67]Loo SK, Rich EC, Ishii J, McGough J, McCracken J, Nelson S. Cognitive functioning in affected sibling pairs with ADHD: familial clustering and dopamine genes. J Child Psychol Psychiatry. 2008; 49(9):950-957.
  • [68]Langley K, van den Bree M, Thomas H, Owen M, O’Donovan M, Thapar A. Association of the dopamine D4 receptor gene 7-repeat allele with neuropsychological test performance of children with ADHD. Am J Psychiatry. 2004; 161(1):133-138.
  • [69]Manor I, Corbex M, Eisenberg J, Gritsenkso I, Bachner-Melman R, Tyano S. Association of the dopamine D5 receptor with attention deficit hyperactivity disorder (ADHD) and scores on a continuous performance test (TOVA). Am J Med Genet Part B Neuropsychiatric Genet Off Publ Int Soc Psychiatric Genet. 2004; 127B(1):73-77.
  • [70]Barkley RA. Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull. 1997; 121(1):65-94.
  • [71]Barr CL. Genetics of childhood disorders: XXII. ADHD, part 6: the dopamine D4 receptor gene. J Am Acad Child Adolesc Psychiatry. 2001; 40(1):118-121.
  • [72]Swanson J, Oosterlaan J, Murias M, Schuck S, Flodman P, Spence MA, Wasdell M, Ding Y, Smith M, Mann M, Carlson C, Kennedy JL, Leung P, Zhang YP, Chen C, Whalen CK, Babb KA, Moyzis R, Posner MI. Attention deficit/hyperactivity disorder children with a 7-repeat allele of the dopamine receptor D4 gene have extreme behavior but normal performance on critical neuropsychological tests of attention. Proc Natl Acad Sci USA. 2000; 97(9):4754-4759.
  • [73]Boonstra AM, Kooij JJ, Buitelaar JK, Oosterlaan J, Sergeant JA, Heister JG. An exploratory study of the relationship between four candidate genes and neurocognitive performance in adult ADHD. Am J Med Genet Part B Neuropsychiatric Genet Off Publ Int Soc Psychiatric Genet. 2008; 147(3):397-402.
  • [74]Fossella J, Fan J, Wu Y, Swanson JM, Pfaff DW, Posner MI. Assessing the molecular genetics of attention networks. BMC Neurosci. 2002; 4(3):3-14.
  • [75]Mill J, Williams BS, Craig I, Taylor A, Polo-Tomas M, Berridge CW, Poulton R, Moffitt TE. Prediction of heterogeneity in intelligence and adult prognosis by genetic polymorphisms in the dopamine system among children with attention-deficit/hyperactivity disorder: evidence from 2 birth cohorts. Arch Gen Psychiatry. 2006; 63(4):462-469.
  文献评价指标  
  下载次数:0次 浏览次数:9次