期刊论文详细信息
Biology of Sex Differences
Sex differences in behavioral decision-making and the modulation of shared neural circuits
William R Mowrey2  Douglas S Portman1 
[1] Department of Biology, University of Rochester, 601 Elmwood Avenue, Box 645, Rochester, NY 14642, USA
[2] Janelia Farm Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
关键词: Neuroethology;    Neural circuits;    Neuroscience;    Invertebrates;    Decision-making;    Neuromodulation;    Sex differences;   
Others  :  793705
DOI  :  10.1186/2042-6410-3-8
 received in 2011-12-07, accepted in 2012-03-21,  发布年份 2012
PDF
【 摘 要 】

Animals prioritize behaviors according to their physiological needs and reproductive goals, selecting a single behavioral strategy from a repertoire of possible responses to any given stimulus. Biological sex influences this decision-making process in significant ways, differentiating the responses animals choose when faced with stimuli ranging from food to conspecifics. We review here recent work in invertebrate models, including C. elegans, Drosophila, and a variety of insects, mollusks and crustaceans, that has begun to offer intriguing insights into the neural mechanisms underlying the sexual modulation of behavioral decision-making. These findings show that an animal's sex can modulate neural function in surprisingly diverse ways, much like internal physiological variables such as hunger or thirst. In the context of homeostatic behaviors such as feeding, an animal's sex and nutritional status may converge on a common physiological mechanism, the functional modulation of shared sensory circuitry, to influence decision-making. Similarly, considerable evidence suggests that decisions on whether to mate or fight with conspecifics are also mediated through sex-specific neuromodulatory control of nominally shared neural circuits. This work offers a new perspective on how sex differences in behavior emerge, in which the regulated function of shared neural circuitry plays a crucial role. Emerging evidence from vertebrates indicates that this paradigm is likely to extend to more complex nervous systems as well. As men and women differ in their susceptibility to a variety of neuropsychiatric disorders affecting shared behaviors, these findings may ultimately have important implications for human health.

【 授权许可】

   
2012 Mowrey and Portman; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705054635301.pdf 1053KB PDF download
Figure 4. 47KB Image download
Figure 3. 83KB Image download
Figure 2. 61KB Image download
Figure 1. 53KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]McFarland DJ: Decision-Making in Animals. Nature 1977, 269:15-21.
  • [2]Tinbergen N: The study of instinct. New York, N.Y.: Clarendon; 1989.
  • [3]De Vries GJ, Södersten P: Sex differences in the brain: The relation between structure and function. Horm Behav 2009, 55:589-596.
  • [4]Kupfermann I: Modulatory actions of neurotransmitters. Ann Rev Neurosci 1979, 2:447-465.
  • [5]Brezina V: Beyond the wiring diagram: signaling through complex neuromodulator networks. Philos T R Soc Lon B 2010, 365:2363-2374.
  • [6]Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW: Central nervous system control of food intake and body weight. Nature 2006, 443:289-295.
  • [7]Axelrod J, Reisine TD: Stress Hormones - Their Interaction and Regulation. Science 1984, 224:452-459.
  • [8]Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE: Sleep state switching. Neuron 2010, 68:1023-1042.
  • [9]Palmer CR, Kristan WB Jr: Contextual modulation of behavioral choice. Curr Opin Neurobiol 2011, 21:520-526.
  • [10]Doty RL, Applebaum S, Zusho H, Settle RG: Sex-Differences in Odor Identification Ability - a Cross-Cultural-Analysis. Neuropsychologia 1985, 23:667-672.
  • [11]Kaciuba-Uscilko H, Grucza R: Gender differences in thermoregulation. Curr Opin Clin Nutr Metab Care 2001, 4:533-536.
  • [12]Bjorkqvist K: Sex-Differences in Physical, Verbal, and Indirect Aggression - a Review of Recent Research. Sex Roles 1994, 30:177-188.
  • [13]Gron G, Wunderlich AP, Spitzer M, Tomczak R, Riepe MW: Brain activation during human navigation: gender-different neural networks as substrate of performance. Nat Neurosci 2000, 3:404-408.
  • [14]Halpern DF: Sex differences in cognitive abilities. 3rd edition. Mahwah, N.J.: L. Erlbaum Associates; 2000.
  • [15]Kimura D: Sex and cognition. Cambridge, M.A.: MIT Press; 1999.
  • [16]Bussey K, Bandura A: Social cognitive theory of gender development and differentiation. Psychol Rev 1999, 106:676-713.
  • [17]Leach LS, Christensen H, Mackinnon AJ, Windsor TD, Butterworth P: Gender differences in depression and anxiety across the adult lifespan: the role of psychosocial mediators. Soc Psychiatry Psychiatr Epidemiol 2008, 43:983-998.
  • [18]Beatty WW: Gonadal hormones and sex differences in nonreproductive behaviors in rodents: organizational and activational influences. Horm Behav 1979, 12:112-163.
  • [19]Gender disparities in mental health World Health Organization Report: Department of Mental Health and Substance Abuse; 2000.
  • [20]Bao AM, Swaab DF: Sex differences in the brain, behavior, and neuropsychiatric disorders. Neuroscientist 2010, 16:550-565.
  • [21]Fava M, Kendler KS: Major depressive disorder. Neuron 2000, 28:335-341.
  • [22]Graybiel AM, Rauch SL: Toward a neurobiology of obsessive-compulsive disorder. Neuron 2000, 28:343-347.
  • [23]McDougle CJ, Erickson CA, Stigler KA, Posey DJ: Neurochemistry in the pathophysiology of autism. J Clin Psychiatry 2005, 66(Suppl 10):9-18.
  • [24]Volkow ND, Wang G-J, Newcorn JH, Kollins SH, Wigal TL, Telang F, Fowler JS, Goldstein RZ, Klein N, Logan J, et al.: Motivation deficit in ADHD is associated with dysfunction of the dopamine reward pathway. Mol Psychiatry 2011, 16:1147-1154.
  • [25]Horak P, Jenni-Eiermann S, Ots I: Do great tits (Parus major) starve to reproduce? Oecologia 1999, 119:293-299.
  • [26]Jersabek CD, Luger MS, Schabetsberger R, Grill S, Strickler JR: Hang on or run? Copepod mating versus predation risk in contrasting environments. Oecologia 2007, 153:761-773.
  • [27]Hull EM: Sex, drugs and gluttony: how the brain controls motivated behaviors. Physiol Behav 2011, 104:173-177.
  • [28]Krichmar JL: The Neuromodulatory System: A Framework for Survival and Adaptive Behavior in a Challenging World. Adapt Behav 2008, 16:385-399.
  • [29]Bermant G, Davidson JM: Biological bases of sexual behavior. New York, N.Y.: Harper & Row; 1974.
  • [30]Ziv I, Benni M, Markovich S, Susswein AJ: Motivational control of sexual behavior in Aplysia fasciata: sequencing and modulation by sexual deprivation and by addition of partners. Behav Neural Biol 1989, 52:180-193.
  • [31]Ziv I, Markovich S, Lustig C, Susswein AJ: Effects of food and mates on time budget in Aplysia fasciata: integration of feeding, reproduction, and locomotion. Behav Neural Biol 1991, 55:68-85.
  • [32]Adamo SA, Chase R: The interactions of courtship, feeding, and locomotion in the behavioral hierarchy of the snail Helix aspersa. Behav Neural Biol 1991, 55:1-18.
  • [33]Ziv I, Botzer D, Markovich S, Susswein AJ: Effects of conspecifics on feeding in Aplysia fasciata. Behav Neural Biol 1991, 55:108-113.
  • [34]Botzer D, Blumberg S, Ziv I, Susswein AJ: Common regulation of feeding and mating in Aplysia fasciata: pheromones released by mating and by egg cordons increase feeding behavior. Behav Neural Biol 1991, 56:251-261.
  • [35]Grosjean Y, Rytz R, Farine JP, Abuin L, Cortot J, Jefferis GS, Benton R: An olfactory receptor for food-derived odours promotes male courtship in Drosophila. Nature 2011, 478:236-240.
  • [36]Root CM, Ko KI, Jafari A, Wang JW: Presynaptic Facilitation by Neuropeptide Signaling Mediates Odor-Driven Food Search. Cell 2011, 145:133-144.
  • [37]Foo H, Mason P: Sensory suppression during feeding. Proc Natl Acad Sci USA 2005, 102:16865-16869.
  • [38]Chao MY, Komatsu H, Fukuto HS, Dionne HM, Hart AC: Feeding status and serotonin rapidly and reversibly modulate a Caenorhabditis elegans chemosensory circuit. Proc Natl Acad Sci USA 2004, 101:15512-15517.
  • [39]Harris G, Korchnak A, Summers P, Hapiak V, Law WJ, Stein AM, Komuniecki P, Komuniecki R: Dissecting the serotonergic food signal stimulating sensory-mediated aversive behavior in C. elegans. PLoS ONE 2011, 6:e21897.
  • [40]Hofler C, Koelle MR: AGS-3 alters Caenorhabditis elegans behavior after food deprivation via RIC-8 activation of the neural G protein G alpha-o. J Neurosci 2011, 31:11553-11562.
  • [41]Gaudry Q, Kristan WB: Behavioral choice by presynaptic inhibition of tactile sensory terminals. Nat Neurosci 2009, 12:1450-1457.
  • [42]Kloppenburg P, Ferns D, Mercer A: Serotonin enhances central olfactory neuron responses to female sex pheromone in the male sphinx moth Manduca sexta. J Neurosci 1999, 19:8172-8181.
  • [43]Kloppenburg P, Mercer AR: Serotonin modulation of moth central olfactory neurons. Ann Rev Entomol 2008, 53:179-190.
  • [44]Barrozo RB, Gadenne C, Anton S: Switching attraction to inhibition: mating-induced reversed role of sex pheromone in an insect. J Exp Biol 2010, 213:2933-2939.
  • [45]Becker JB: Sexual differentiation of motivation: a novel mechanism? Horm Behav 2009, 55:646-654.
  • [46]Piech RM, Pastorino MT, Zald DH: All I saw was the cake. Hunger effects on attentional capture by visual food cues. Appetite 2010, 54:579-582.
  • [47]Rolls ET, Rolls BJ, Rowe EA: Sensory-specific and motivation-specific satiety for the sight and taste of food and water in man. Physiol Behav 1983, 30:185-192.
  • [48]Tong J, Mannea E, Aime P, Pfluger PT, Yi C-X, Castaneda TR, Davis HW, Ren X, Pixley S, Benoit S, et al.: Ghrelin Enhances Olfactory Sensitivity and Exploratory Sniffing in Rodents and Humans. J Neurosci 2011, 31:5841-5846.
  • [49]Zhao F-I, Shen T, Kaya N, Lu S-g, Cao Y, Herness S: Expression, physiological action, and coexpression patterns of neuropeptide Y in rat taste-bud cells. Proc Natl Acad Sci USA 2005, 102:11100-11105.
  • [50]Mousley A, Polese G, Marks NJ, Eisthen HL: Terminal nerve-derived neuropeptide Y modulates physiological responses in the olfactory epithelium of hungry axolotls (Ambystoma mexicanum). J Neurosci 2006, 26:7707-7717.
  • [51]Lipton J, Kleemann G, Ghosh R, Lints R, Emmons SW: Mate searching in Caenorhabditis elegans: a genetic model for sex drive in a simple invertebrate. J Neurosci 2004, 24:7427-7434.
  • [52]Barrios A, Nurrish S, Emmons SW: Sensory regulation of C. elegans male mate-searching behavior. Curr Biol 2008, 18:1865-1871.
  • [53]Kleemann G, Jia L, Emmons SW: Regulation of Caenorhabditis elegans male mate searching behavior by the nuclear receptor DAF-12. Genetics 2008, 180:2111-2122.
  • [54]Moffatt C: Steroid hormone modulation of olfactory processing in the context of socio-sexual behaviors in rodents and humans. Brain Res Rev 2003, 43:192-206.
  • [55]Shah SN, Nyby JG: Ghrelin's quick inhibition of androgen-dependent behaviors of male house mice (Mus musculus). Horm Behav 2010, 57:291-296.
  • [56]McShane TM, May T, Miner JL, Keisler DH: Central actions of neuropeptide-Y may provide a neuromodulatory link between nutrition and reproduction. Biol Reprod 1992, 46:1151-1157.
  • [57]Valenstein ES, Kakolewski JW, Cox VC: Sex differences in taste preference for glucose and saccharin solutions. Science 1967, 156:942-943.
  • [58]Bell DD, Zucker I: Sex differences in body weight and eating: organization and activation by gonadal hormones in the rat. Physiol Behav 1971, 7:27-34.
  • [59]Richter CP: Self-selection of diets. J Pediatrics 1942, 20:230-236.
  • [60]Richter CP: Biology of drives. J Comp Physiol Psych 1947, 40:129-134.
  • [61]Richter CP, MacLean A: Salt taste threshold of humans. Am J Physiol 1939, 126:1-6.
  • [62]Richter C: Physiological psychology. Ann Rev Physiol 1942, 4:561-574.
  • [63]Waldbauer GP, Friedman S: Self-Selection of Optimal Diets by Insects. Ann Rev Entomol 1991, 36:43-63.
  • [64]Krecek J, Novakova V, Stibral K: Sex differences in the taste preference for a salt solution in the rat. Physiol Behav 1972, 8:183-188.
  • [65]Maklakov AA, Simpson SJ, Zajitschek F, Hall MD, Dessmann J, Clissold F, Raubenheimer D, Bonduriansky R, Brooks RC: Sex-specific fitness effects of nutrient intake on reproduction and lifespan. Curr Biol 2008, 18:1062-1066.
  • [66]Doty RL, Cameron EL: Sex differences and reproductive hormone influences on human odor perception. Physiol Behav 2009, 97:213-228.
  • [67]Frye CA, Demolar GL: Menstrual cycle and sex differences influence salt preference. Physiol Behav 1994, 55:193-197.
  • [68]Stoeckel LE, Cox JE, Cook EW, Weller RE: Motivational state modulates the hedonic value of food images differently in men and women. Appetite 2007, 48:139-144.
  • [69]Frank TC, Kim GL, Krzemien A, Vugt DAV: Effect of menstrual cycle phase on corticolimbic brain activation by visual food cues. Brain Res 2010, 1363:81-92.
  • [70]Kuga M, Ikeda M, Suzuki K: Gustatory changes associated with the menstrual cycle. Physiol Behav 1999, 66:317-322.
  • [71]Weissburg MJ, Derby CD: Regulation of sex-specific feeding behavior in fiddler crabs - physiological properties of chemoreceptor neurons in claws and legs of males and females. J Comp Physiol A 1995, 176:513-526.
  • [72]Weissburg MJ: Tuning breadth and sex-specific sensitivity in chemosensory neurons of male and female Uca pugnax. J Comp Physiol A 1999, 185:229-238.
  • [73]Meunier N, Ferveur JF, Marion-Poll F: Sex-specific non-pheromonal taste receptors in Drosophila. Curr Biol 2000, 10:1583-1586.
  • [74]Fraser AM, Mechaber WL, Hildebrand JG: Electroantennographic and behavioral responses of the sphinx moth Manduca sexta to host plant headspace volatiles. J Chem Ecol 2003, 29:1813-1833.
  • [75]Skiri HT, Galizia CG, Mustaparta H: Representation of primary plant odorants in the antennal lobe of the moth Heliothis virescens using calcium imaging. Chem Senses 2004, 29:253-267.
  • [76]Anderson AR, Wanner KW, Trowell SC, Warr CG, Jaquin-Joly E, Zagatti P, Robertson H, Newcomb RD: Molecular basis of female-specific odorant responses in Bombyx mori. Insect Biochem Mol Biol 2009, 39:189-197.
  • [77]Wanner KW, Anderson AR, Trowell SC, Theilmann DA, Robertson HM, Newcomb RD: Female-biased expression of odourant receptor genes in the adult antennae of the silkworm,Bombyx mori. Insect Mol Biol 2007, 16:107-119.
  • [78]Lee K, Portman D: Neural sex modifies the function of a C. elegans sensory circuit. Curr Biol 2007, 17:1858-l1863.
  • [79]Curtis KS, Contreras RJ: Sex differences in electrophysiological and behavioral responses to NaCl taste. Behav Neurosci 2006, 120:917-924.
  • [80]Vargas MA, Luo N, Yamaguchi A, Kapahi P: A role for S6 kinase and serotonin in postmating dietary switch and balance of nutrients in D. melanogaster. Curr Biol 2010, 20:1006-1011.
  • [81]Ribeiro C, Dickson BJ: Sex peptide receptor and neuronal TOR/S6K signaling modulate nutrient balancing in Drosophila. Curr Biol 2010, 20:1000-1005.
  • [82]Cohen RW: Diet balancing in the cockroach Rhyparobia madera: Does serotonin regulate this behavior? J Insect Behav 2001, 14:99-111.
  • [83]Wurtman JJ, Wurtman RJ: Fenfluramine and fluoxetine spare protein consumption while suppressing caloric intake by rats. Science 1977, 198:1178-1180.
  • [84]Fernstrom JD, Wurtman RJ: Brain serotonin content: increase following ingestion of carbohydrate diet. Science 1971, 174:1023-1025.
  • [85]Fernstrom JD, Wurtman RJ: Brain serotonin content: physiological dependence on plasma tryptophan levels. Science 1971, 173:149-152.
  • [86]Fernstrom JD, Wurtman RJ: Brain serotonin content: physiological regulation by plasma neutral amino acids. Science 1972, 178:414-416.
  • [87]Field EF, Whishaw IQ: Sex Differences in the Organization of Movement. In Sex Differences in the Brain: From Genes to Behavior. Edited by Becker JB, Berkley KJ, Geary N, Hampson E, Herman JP, Young EA. New York, N.Y.: Oxford University Press; 2008:155-175.
  • [88]Field EF, Pellis SM: The Brain as the Engine of Sex Differences in the Organization of Movement in Rats. Arch Sex Behav 2008, 37:30-42.
  • [89]Staras K, Kemenes I, Benjamin PR, Kemenes G: Loss of self-inhibition is a cellular mechanism for episodic rhythmic behavior. Curr Biol 2003, 13:116-124.
  • [90]Jing J, Vilim FS, Horn CC, Alexeeva V, Hatcher NG, Sasaki K, Yashina I, Zhurov Y, Kupfermann I, Sweedler JV, Weiss KR: From hunger to satiety: reconfiguration of a feeding network by Aplysia neuropeptide Y. J Neurosci 2007, 27:3490-3502.
  • [91]Gray JM, Hill JJ, Bargmann CI: A circuit for navigation in Caenorhabditis elegans. Proc Natl Acad Sci USA 2005, 102:3184-3191.
  • [92]Hills T, Brockie P, Maricq A: Dopamine and glutamate control area-restricted search behavior in Caenorhabditis elegans. J Neurosci 2004, 24:1217-1225.
  • [93]Sawin ER, Ranganathan R, Horvitz HR: C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 2000, 26:619-631.
  • [94]Wakabayashi T, Osada T, Shingai R: Serotonin deficiency shortens the duration of forward movement in Caenorhabditis elegans. Biosci Biotechnol Biochem 2005, 69:1767-1770.
  • [95]Horvitz HR, Chalfie M, Trent C, Sulston JE, Evans PD: Serotonin and octopamine in the nematode Caenorhabditis elegans. Science 1982, 216:1012-1014.
  • [96]Martin J, Ernst R, Heisenberg M: Temporal pattern of locomotor activity in Drosophila melanogaster. J Comp Physiol A 1999, 184:73-84.
  • [97]Gatti S, Ferveur J, Martin J: Genetic identification of neurons controlling a sexually dimorphic behaviour. Curr Biol 2000, 10:667-670.
  • [98]Belgacem YH, Martin J-R: Disruption of insulin pathways alters trehalose level and abolishes sexual dimorphism in locomotor activity in Drosophila. J Neurobiol 2006, 66:19-32.
  • [99]Belgacem YH, Martin J-R: Neuroendocrine control of a sexually dimorphic behavior by a few neurons of the pars intercerebralis in Drosophila. Proc Natl Acad Sci USA 2002, 99:15154-15158.
  • [100]Truman JW, Hiruma K, Allee JP, MacWhinnie SGB, Champlin DT, Riddiford LM: Juvenile hormone is required to couple imaginal disc formation with nutrition in insects. Science 2006, 312:1385-1388.
  • [101]Puig O, Tjian R: Nutrient availability and growth: regulation of insulin signaling by dFOXO/FOXO1. Cell Cycle 2006, 5:503-505.
  • [102]Meunier N, Belgacem YH, Martin J-R: Regulation of feeding behaviour and locomotor activity by takeout in Drosophila. J Exp Biol 2007, 210:1424-1434.
  • [103]Gershon J: A meta-analytic review of gender differences in ADHD. J Atten Disord 2002, 5:143-154.
  • [104]Volkow ND, Wang G-J, Kollins SH, Wigal TL, Newcorn JH, Telang F, Fowler JS, Zhu W, Logan J, Ma Y, et al.: Evaluating dopamine reward pathway in ADHD: clinical implications. JAMA 2009, 302:1084-1091.
  • [105]Oades R: Dopamine-serotonin interactions in attention-deficit hyperactivity disorder (ADHD). Prog Brain Res 2008, 172:543-565.
  • [106]Tripp G, Wickens JR: Neurobiology of ADHD. Neuropharmacology 2009, 57:579-589.
  • [107]Arnsten AF: Catecholamine influences on dorsolateral prefrontal cortical networks. Biol Psychiatry 2011, 69:e89-99.
  • [108]Nilsen SP, Chan Y-B, Huber R, Kravitz EA: Gender-selective patterns of aggressive behavior in Drosophila melanogaster. Proc Natl Acad Sci USA 2004, 101:12342-12347.
  • [109]Beach FA, et al.: Factors involved in the control of mounting behavior by female mammals. In Perspectives in Reproduction and Sexual Behavior: A Memorial to William C Young. Edited by Diamond E. Bloomington: Indiana University Press; 1968:88-131.
  • [110]Vasey PL: Same-sex sexual partner preference in hormonally and neurologically unmanipulated animals. Ann Rev Sex Res 2002, 13:141-179.
  • [111]Södersten P: Lordosis behaviour in male, female and androgenized female rats. J Endocrinol 1976, 70:409-420.
  • [112]Clyne JD, Miesenbock G: Sex-specific control and tuning of the pattern generator for courtship song in Drosophila. Cell 2008, 133:354-363.
  • [113]Kimchi T, Xu J, Dulac C: A functional circuit underlying male sexual behaviour in the female mouse brain. Nature 2007, 448:1009-1014.
  • [114]Young WC, Goy RW, Phoenix CH: Hormones and Sexual Behavior. Science 1964, 143:212-218.
  • [115]Certel SJ, Leung A, Lin C-Y, Perez P, Chiang A-S, Kravitz EA: Octopamine neuromodulatory effects on a social behavior decision-making network in Drosophila males. PLoS One 2010, 5:e13248.
  • [116]Certel SJ, Savella MG, Schlegel DCF, Kravitz EA: Modulation of Drosophila male behavioral choice. Proc Natl Acad Sci USA 2007, 104:4706-4711.
  • [117]Ganter GK, Walton KL, Merriman JO, Salmon MV, Brooks KM, Maddula S, Kravitz EA: Increased male-male courtship in ecdysone receptor deficient adult flies. Behav Genet 2007, 37:507-512.
  • [118]Liu T, Dartevelle L, Yuan C, Wei H, Wang Y, Ferveur J-F, Guo A: Reduction of dopamine level enhances the attractiveness of male Drosophila to other males. PLoS One 2009, 4:e4574.
  • [119]Liu T, Dartevelle L, Yuan C, Wei H, Wang Y, Ferveur JF, Guo A: Increased dopamine level enhances male-male courtship in Drosophila. J Neurosci 2008, 28:5539-5546.
  • [120]Stowers L, Holy TE, Meister M, Dulac C, Koentges G: Loss of sex discrimination and male-male aggression in mice deficient for TRP2. Science 2002, 295:1493-1500.
  • [121]Liu Y, Jiang Ya, Si Y, Kim J-Y, Chen Z-F, Rao Y: Molecular regulation of sexual preference revealed by genetic studies of 5-HT in the brains of male mice. Nature 2011, 472:95-99.
  • [122]Kelly MJ, Levin ER: Rapid actions of plasma membrane estrogen receptors. Trends Endocrinol Metab 2001, 12:152-156.
  • [123]Remage-Healey L, Bass AH: A rapid neuromodulatory role for steroid hormones in the control of reproductive behavior. Brain Res 2006, 1126:27-35.
  • [124]Mani S, Allen J, Clark J, Blaustein J, O'Malley B: Convergent pathways for steroid hormone- and neurotransmitter-induced rat sexual behavior. Science 1994, 265:1246-1249.
  • [125]Schütt C, Nöthiger R: Structure, function and evolution of sex-determining systems in Dipteran insects. Development 2000, 127:667-677.
  • [126]Marín I, Baker BS: The evolutionary dynamics of sex determination. Science 1998, 281:1990-1994.
  • [127]Raymond CS, Shamu CE, Shen MM, Seifert KJ, Hirsch B, Hodgkin J, Zarkower D: Evidence for evolutionary conservation of sex-determining genes. Nature 1998, 391:691-695.
  • [128]Matsuda M, Nagahama Y, Shinomiya A, Sato T, Matsuda C, Kobayashi T, Morrey CE, Shibata N, Asakawa S, Shimizu N, et al.: DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 2002, 417:559-563.
  • [129]Raymond CS, Parker ED, Kettlewell JR, Brown LG, Page DC, Kusz K, Jaruzelska J, Reinberg Y, Flejter WL, Bardwell VJ, et al.: A region of human chromosome 9p required for testis development contains two genes related to known sexual regulators. Hum Mol Genet 1999, 8:989-996.
  • [130]Moniot B, Berta P, Scherer G, Sudbeck P, Poulat F: Male specific expression suggests role of DMRT1 in human sex determination. Mech Develop 2000, 91:323-325.
  • [131]Zarkower D: Establishing sexual dimorphism: conservation amidst diversity? Nat Rev Genet 2001, 2:175-185.
  • [132]Rideout EJ, Dornan AJ, Neville MC, Eadie S, Goodwin SF: Control of sexual differentiation and behavior by the doublesex gene in Drosophila melanogaster . Nat Neurosci 2010, 13:458-466.
  • [133]Ross JM, Kalis AK, Murphy MW, Zarkower D: The DM domain protein MAB-3 promotes sex-specific neurogenesis in C. elegans by regulating bHLH proteins. Dev Cell 2005, 8:881-892.
  • [134]Lints R, Emmons SW: Regulation of sex-specific differentiation and mating behavior in C. elegans by a new member of the DM domain transcription factor family. Genes Dev 2002, 16:2390-2402.
  • [135]Siehr MS, Koo PK, Sherlekar AL, Bian X, Bunkers MR, Miller RM, Portman DS, Lints R: Multiple doublesex-related genes specify critical cell fates in a C. elegans male neural circuit. PLoS One 2011, 6:e26811.
  • [136]Wilkins AS: Moving up the hierarchy: a hypothesis on the evolution of a genetic sex determination pathway. Bioessays 1995, 17:71-77.
  • [137]Graham P, Penn J, Schedl P: Masters change, slaves remain. Bioessays 2003, 25:1-4.
  文献评价指标  
  下载次数:56次 浏览次数:14次