期刊论文详细信息
BMC Bioinformatics
NetworkPainter: dynamic intracellular pathway animation in Cytobank
Jonathan R Karr2  Harendra Guturu5  Edward Y Chen1  Stuart L Blair4  Jonathan M Irish3  Nikesh Kotecha4  Markus W Covert1 
[1] Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford 94305, CA, USA
[2] Department of Genetics & Genomic Sciences, Mount Sinai School of Medicine, One Gustave L Levy Place, New York 10029, NY, USA
[3] Department of Cancer Biology, Vanderbilt University, 740B Preston Building, 2220 Pierce Avenue, Nashville 37232, TN, USA
[4] Cytobank Inc, 821 West El Camino Real, Mountain View 94040, CA, USA
[5] Department of Electrical Engineering, Stanford University, 279 Campus Drive West, Stanford 94305, CA, USA
关键词: Cytometry;    Systems biology;    Network;    Animation;    Visualization;   
Others  :  1232526
DOI  :  10.1186/s12859-015-0602-4
 received in 2014-10-28, accepted in 2015-04-28,  发布年份 2015
PDF
【 摘 要 】

Background

High-throughput technologies such as flow and mass cytometry have the potential to illuminate cellular networks. However, analyzing the data produced by these technologies is challenging. Visualization is needed to help researchers explore this data.

Results

We developed a web-based software program, NetworkPainter, to enable researchers to analyze dynamic cytometry data in the context of pathway diagrams. NetworkPainter provides researchers a graphical interface to draw and “paint” pathway diagrams with experimental data, producing animated diagrams which display the activity of each network node at each time point.

Conclusion

NetworkPainter enables researchers to more fully explore multi-parameter, dynamical cytometry data.

【 授权许可】

   
2015 Karr et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20151115012307897.pdf 1797KB PDF download
Figure 2. 97KB Image download
Figure 1. 110KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Przytycka TM, Singh M, Slonim DK. Toward the dynamic interactome: it's about time. Brief Bioinform. 2010; 11(1):15-29.
  • [2]Chattopadhyay PK, Roederer M. Cytometry: today’s technology and tomorrow’s horizons. Methods. 2012; 57(3):251-8.
  • [3]Perfetto SP, Chattopadhyay PK, Roederer M. Seventeen-colour flow cytometry: unravelling the immune system. Nat Rev Immunol. 2004; 4(8):648-55.
  • [4]Ornatskya O, Bandura D, Baranova V, Nitza M, Winnika MA, Tanner S. Highly multiparametric analysis by mass cytometry. J Immun Meth. 2010; 361(1–2):1-20.
  • [5]Darzynkiewicz Z. Critical aspects in analysis of cellular DNA content. Curr Protoc Cytom. 2011; 56:7.2.1-7.2.8.
  • [6]Sigal A, Danon T, Cohen A, Milo R, Geva-Zatorsky N, Lustig G et al.. Generation of a fluorescently labeled endogenous protein library in living human cells. Nat Protoc. 2007; 2(6):1515-27.
  • [7]Biancotto A, Fuchs JC, Williams A, Dagur PK, McCoy JP. High dimensional flow cytometry for comprehensive leukocyte immunophenotyping (CLIP) in translational research. J Immunol Methods. 2011; 363(2):245-61.
  • [8]Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach R, Lou X et al.. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem. 2009; 81(16):6813-22.
  • [9]Bendall SC, Simonds EF, Qiu P, Amir e-AD, Krutzik PO, Finck R et al.. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science. 2011; 332(6030):687-96.
  • [10]Bodenmiller B, Zunder ER, Finck R, Chen TJ, Savig ES, Bruggner RV et al.. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat Biotechnol. 2012; 30(9):858-67.
  • [11]Chen TJ, Kotecha N. Cytobank: providing an analytics platform for community cytometry data analysis and collaboration. Curr Top Microbiol Immunol. 2014; 377:127-57.
  • [12]O'Donoghue SI, Gavin AC, Gehlenborg N, Goodsell DS, Hériché JK, Nielsen CB et al.. Visualizing biological data–now and in the future. Nat Meth. 2010; 7 Suppl 3:S2-4.
  • [13]Gehlenborg N, O'Donoghue SI, Baliga NS, Goesmann A, Hibbs MA, Kitano H et al.. Visualization of omics data for systems biology. Nat Meth. 2010; 7 Suppl 3:S56-68.
  • [14]Secrier M, Schneider R. Visualizing time-related data in biology, a review. Brief Bioinform. 2013; 15(5):771-82.
  • [15]Sarkar D, Le Meur N, Gentleman R. Using flowViz to visualize flow cytometry data. Bioinformatics. 2008;24(6):878–879
  • [16]Hahne F, LeMeur N, Brinkman RR, Ellis B, Haaland P, Sarkar D et al.. FlowCore: a bioconductor package for high throughput flow cytometry. BMC Bioinformatics. 2009; 10:106. BioMed Central Full Text
  • [17]Lee K, Hahne F, Sarkar D, Gentleman R. iFlow: A graphical user interface for flow cytometry tools in bioconductor. Adv Bioinformatics. 2009;2009(10):38–39.
  • [18]Roederer M, Nozzi JL, Nason MC. SPICE: exploration and analysis of post-cytometric complex multivariate datasets. Cytometry A. 2011; 79(2):167-74.
  • [19]Qiu P, Simonds EF, Bendall SC, Gibbs KD, Bruggner RV, Linderman MD et al.. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol. 2011; 29(10):886-91.
  • [20]Amir e-AD, Davis KL, Tadmor MD, Simonds EF, Levine JH, Bendall SC et al.. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol. 2013; 31(6):545-52.
  • [21]Curtis RE, Yuen A, Song L, Goyal A, Xing EP. TVNViewer: an interactive visualization tool for exploring networks that change over time or space. Bioinformatics. 2011; 27(13):1880-1.
  • [22]Hu Z, Chang YC, Wang Y, Huang CL, Liu Y, Tian F et al.. VisANT 4.0: Integrative network platform to connect genes, drugs, diseases and therapies. Nucleic Acids Res. 2013; 41(Web server issue):W225-31.
  • [23]Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011; 27(3):431-2.
  • [24]Enjalbert B, Jourdan F, Portais JC. Intuitive visualization and analysis of multi-omics data and application to Escherichia coli carbon metabolism. PLoS One. 2011; 6(6): Article ID e21318
  • [25]Warsow G, Greber B, Falk SS, Harder C, Siatkowski M, Schordan S et al.. ExprEssence–revealing the essence of differential experimental data in the context of an interaction/regulation net-work. BMC Syst Biol. 2010; 4:164. BioMed Central Full Text
  • [26]Westenberg MA, Roerdink JB, Kuipers OP, van Hijum SA. SpotXplore: a cytoscape plugin for visual exploration of hotspot expression in gene regulatory networks. Bioinformatics. 2010; 26(22):2922-3.
  • [27]Kincaid R, Kuchinsky A, Creech M. VistaClara: an expression browser plug-in for cytoscape. Bioinformatics. 2008; 24(18):2112-4.
  • [28]Klukas C, Schreiber F. Integration of -omics data and networks for biomedical research with VANTED. J Integer Bioinform. 2010; 7(2):112.
  • [29]Longabaugh WJ. BioTapestry: a tool to visualize the dynamic properties of gene regulatory networks. Methods Mol Biol. 2012; 786:359-94.
  • [30]Latendresse M, Karp PD. Web-based metabolic network visualization with a zooming user interface. BMC Bioinformatics. 2011; 12:176. BioMed Central Full Text
  • [31]Nagasaki M, Saito A, Jeong E, Li C, Kojima K, Ikeda E et al.. Cell illustrator 4.0: a computational platform for systems biology. Stud Health Technol Inform. 2011; 162:160-81.
  • [32]Matsuoka Y, Funahashi A, Ghosh S, Kitano H. Modeling and simulation using cell designer. Methods Mol Biol. 2014; 1164:121-45.
  • [33]Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000; 28(1):27-30.
  • [34]Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A. 1998; 95(25):14863-8.
  • [35]Bar-Joseph Z, Gifford DK, Jaakkola TS. Fast optimal leaf ordering for hierarchical clustering. Bioinformatics. 2001; 17 Suppl 1:S22-9.
  • [36]Ellson J, Gansner E, Koutsofios L, North SC, Woodhull G. Graphviz– open source graph drawing tools. Lect Note Comput Sci. 2002; 2265:483-4.
  文献评价指标  
  下载次数:29次 浏览次数:23次