期刊论文详细信息
Biotechnology for Biofuels
Treatment of rice straw hemicellulosic hydrolysates with advanced oxidative processes: a new and promising detoxification method to improve the bioconversion process
João Paulo Alves Silva1  Livia Melo Carneiro1  Inês Conceição Roberto1 
[1] Deparatmento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, Estrada Municipal do Campinho s/n, Cep, 12602-810, Lorena, SP, Brazil
关键词: Detoxification;    Advanced oxidative processes;    Rice straw hemicellulosic hydrolysate;    Pichia stipitis;    Ethanol;   
Others  :  798150
DOI  :  10.1186/1754-6834-6-23
 received in 2012-09-28, accepted in 2013-01-31,  发布年份 2013
PDF
【 摘 要 】

Background

The use of lignocellulosic constituents in biotechnological processes requires a selective separation of the main fractions (cellulose, hemicellulose and lignin). During diluted acid hydrolysis for hemicellulose extraction, several toxic compounds are formed by the degradation of sugars and lignin, which have ability to inhibit microbial metabolism. Thus, the use of a detoxification step represents an important aspect to be considered for the improvement of fermentation processes from hydrolysates. In this paper, we evaluated the application of Advanced Oxidative Processes (AOPs) for the detoxification of rice straw hemicellulosic hydrolysate with the goal of improving ethanol bioproduction by Pichia stipitis yeast. Aiming to reduce the toxicity of the hemicellulosic hydrolysate, different treatment conditions were analyzed. The treatments were carried out according to a Taguchi L16 orthogonal array to evaluate the influence of Fe+2, H2O2, UV, O3 and pH on the concentration of aromatic compounds and the fermentative process.

Results

The results showed that the AOPs were able to remove aromatic compounds (furan and phenolic compounds derived from lignin) without affecting the sugar concentration in the hydrolysate. Ozonation in alkaline medium (pH 8) in the presence of H2O2 (treatment A3) or UV radiation (treatment A5) were the most effective for hydrolysate detoxification and had a positive effect on increasing the yeast fermentability of rice straw hemicellulose hydrolysate. Under these conditions, the higher removal of total phenols (above 40%), low molecular weight phenolic compounds (above 95%) and furans (above 52%) were observed. In addition, the ethanol volumetric productivity by P. stipitis was increased in approximately twice in relation the untreated hydrolysate.

Conclusion

These results demonstrate that AOPs are a promising methods to reduce toxicity and improve the fermentability of lignocellulosic hydrolysates.

【 授权许可】

   
2013 Silva et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706102752636.pdf 705KB PDF download
Figure 5. 25KB Image download
Figure 4. 56KB Image download
Figure 3. 78KB Image download
Figure 2. 105KB Image download
Figure 1. 101KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Pauly M, Keegstra K: Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 2008, 54:559-568.
  • [2]Lewin M, Goldstain IS: Wood Structure and Composition. New York: CRC Press; 1991.
  • [3]Fengel D, Weneger G: Wood: Chemistry, Ultra-Structure, Reactions. Berlin: Walter de Gruyter; 1989.
  • [4]Goldstein IS: Organic Chemicals from Biomass. Boca Raton: CRC Press; 1981.
  • [5]Binod P, Sindhu R, Singhania RR, Vikram S, Devi L, Nagalakshmi S, Kurien N, Sukumaran RK, Pandey A: Bioethanol production from rice straw: an overview. Bioresour Technol 2010, 101:4767-4774.
  • [6]Mussatto SI, Roberto IC: Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol 2004, 93:1-10.
  • [7]Arslan S, Saraçoglu NE: Effect of pretreatment methods for hazelnut shell hydrolysate fermentation with Pichia stipitis to ethanol. Bioresour Technol 2010, 101:8664-8670.
  • [8]Chandel AK, Kapoor RK, Singh A, Kuhad RC: Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour Technol 2007, 98:1947-1950.
  • [9]Villarreal MLM, Prata AMR, Felipe MGA, Silva JBA: Detoxification procedures of eucalyptus hemicellulose hydrolysate for xylitol production by Candida guilliermondii. Enzyme Microb Technol 2006, 40:17-24.
  • [10]López MJ, Nichols NN, Dien BS, Moreno J, Bothast RJ: Isolation of microorganisms for biological detoxification of lignocellulosic hydrolysates. Appl Microbiol Biotechnol 2004, 64:125-131.
  • [11]Lee JM, Venditti AR, Jameel H, Kenealy WR: Detoxification of woody hydrolyzates with activated carbon for bioconversion to ethanol by the thermophilic anaerobic bacterium Thermoanaerobacterium saccharolyticum. Biomass Bioenergy 2011, 35:626-636.
  • [12]Zhuang J, Liu Y, Wu Z, Sun Y, Lin L: Hydrolysis of wheat straw hemicellulose and detoxification of the hydrolysate for xylitol production. BioResources 2009, 4(2):674-686.
  • [13]Carvalho RJ, Marton JM, Silva F, Felipe MG: Avaliação do sistema combinado de tratamento do hidrolisado hemicelulósico de bagaço de cana-de- açúcar com carvão ativo e resinas de troca iônica para sua utilização como meio de fermentação. Revista Analytica 2005, 18:48-55.
  • [14]Zhu J, Yong Q, Xu Y, Yu S: Detoxification of corn stover prehydrolyzate by trialkylamine extraction to improve the ethanol production with Pichia stipitis CBS 5776. Bioresour Technol 2011, 102:1663-1668.
  • [15]Alriksson B, Cavka A, Jönsson LJ: Improving the fermentability of enzymatic hydrolysates of lignocelluloses through chemical in-situ detoxification with reducing agents. Bioresource Technolog 2011, 102:1254-1263.
  • [16]Martinez A, Rodrigues ME, Wells ML, York SW, Preston JF, Ingram LO: Detoxification of dilute acid hydrolysates of Lignocellulose with lime. Biotechnol Prog 2001, 17:287-293.
  • [17]Palmqvist E, Hahn-Hägerdal B: Fermentation of lignocellulosic hydrolyzates. I: inhibition and detoxification. Bioresour Technol 2000, 74:25-33.
  • [18]Telli-Okur M, Eken-Saraçoglu N: Fermentation of sunflower seed hull hydrolysate to ethanol by Pichia stipitis. Bioresour Technol 2008, 99:2162-2169.
  • [19]Larsson S, Reimann A, Nilvebrant NO, Jonsson LJ: Comparison of different methods for the detoxification of Lignocellulose hydrolyzates of spruce. Appl Biochem Biotechnol 1999, 77–79:91-103.
  • [20]Eken-Saraçoglu N, Arslan Y: Comparison of different pretreatments in ethanol fermentation using corn cob hemicellulosic hydrolysate with Pichia stipitis and Candida shehatae. Biotechnol Lett 2000, 22:855-858.
  • [21]Mussatto SI, Santos JC, Roberto IC: Effect of pH and activated charcoal adsorption on hemicellulosic hydrolysate detoxification for xylitol production. J Chem Technol Biotechnol 2004, 79:590-596.
  • [22]Ramos WLS, Poznyak T, Chairez I, Córdova RI: Remediation of lignin and its derivatives from pulp and paper industry wastewater by the combination of chemical precipitation and ozonation. J Hazard Mater 2009, 169:428-434.
  • [23]Glaze WH, Kang JW, Chapin DH: The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci Eng 1987, 9:335-352.
  • [24]Ahmed B, Mohamed H, Limem E, Bensalah N: Degradation and mineralization of organic pollutants contained in actual pulp and paper mill wastewaters by a UV/H2O2 process. Ind Eng Chem 2009, 48:3370-3379.
  • [25]Pacheco JR, Peralta-Zamora PG: Integration of physical chemistry and advanced oxidative processes for remediation of landfill leachate. Engenharia Sanitária e Ambiental 2004, 9(4):306-311.
  • [26]Nogueira RFP, Trovó AG, Silva MRA, Villa RD, Oliveira MCO: Fundamentos e aplicações ambientais dos processos Fenton e foto-Fenton. QuÍmica Nova 2007, 30(2):400-408.
  • [27]Freire RS, Pelegrini R, Kubota LT, Durán N: Novas tendências para o tratamento de resíduos industriais contendo espécies organocloradas. Química Nova 2000, 23(4):504-511.
  • [28]Legrini O, Oliveros E, Braun AM: Photochemical processes for water treatment. Chem Rev 1993, 93:671-698.
  • [29]Lanzalunga O, Bietti M: Photo- and radiation chemical induced degradation of lignin model compounds. Journal of Photochemistry and Photobiology B: Biology 2000, 56:85-108.
  • [30]Guimarães JR, Almeida Junior RL, Maniero MG, Fadini PS: Ozonização em meio básico para redução de cor do licor negro de indústria de celulose de algodão. Engenharia Sanitária e Ambiental 2010, 15(1):93-98.
  • [31]Chamarro E, Marco A, Esplugas S: Use of Fenton reagent to improve organic chemical biodegradability. Water Res 2001, 35(4):1047-1051.
  • [32]Reyes J, Dezotti M, Mansilla H, Villasenõr J, Esposito E, Durán N: Biomass photochemistry-XXII: combined photochemical and biological process for treatment of Kraft E1 effluent. Appl Catal Environ 1998, 15:211-219.
  • [33]Meriç S, Kaptan D, Olmez T: Color and COD removal wastewater containing Reactiva Black 5 using Fenton´s oxidation process. Chemosphere 2004, 54:435-441.
  • [34]Palmqvist E, Hahn-Hägerdal B: Fermentation of lignocellulosic hydrolyzates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 2000, 74:25-33.
  • [35]Carvalho GBM, Mussatto SI, Candido EJ, Silva JBS: Comparison of different procedures for the detoxification of eucalyptus hemicellulosic hydrolysate for use in fermentative processes. J Chem Technol Biotechnol 2006, 81:152-157.
  • [36]Machado AEH, Ruggiero R, Neumann MG: Fotodegradação de ligninas acelerada por peróxido de hidrogênio: evidências de participação do 1O2(1Δg) nas reações em meio alcalino. Química Nova 1994, 17(2):111-118.
  • [37]Gernjak W, Krutzler T, Glaser A, Malato S, Caceres J, Bauer R, Fernández-Alba AR: Photo-Fenton treatment of water containing natural phenolic pollutants. Chemosphere 2003, 50:71-78.
  • [38]Ragnar M, Lindgren CT, Nilvebrant NO: pka-values of guaiacyl and syringyl phenols related to lignin. Journal of Wood Chemistry and Technology 2000, 20(3):277-305.
  • [39]Hon DNS, Shiraishi N: Wood and Cellulosic Chemistry. New York: Marcel Dekker; 2001.
  • [40]Martinez A, Rodriguez ME, York SW, Preston JF, Ingram LO: Use of UV absorbance to monitor furans in dilute acid hydrolysates of biomass. Biotechnol Prog 2000, 16:637-641.
  • [41]Goldschimid O: Determination of phenolic hydroxyl content of lignin preparations by ultraviolet spectrophotometry. Anal Chem 1954, 26(9):1421-1423.
  • [42]Mansouri NEE, Salvadó J: Analytical methods for determining functional Groups in various technical lignins. Ind Crop Prod 2007, 26:116-124.
  • [43]Roberto IC, Mussatto SI, Rodrigues RCLB: Dilute-acid hydrolysis for optmization of xylose recovery from rice straw in a semi-pilot reactor. Ind Crop Prod 2003, 17:171-176.
  • [44]Singleton V, Orthofer R, Lamuela-Raventós R: Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteus reagent. Methods Enzymol 1999, 299:152-178.
  文献评价指标  
  下载次数:43次 浏览次数:14次